波粒二象性仿真理论(一) Wave Particle Duality Principle

2023-05-16

Wave Particle Duality Principle

October 22, 2020 by Electrical4U

With the development of Photoelectric effect, Crompton’s effect and Bohr’s model of atom, the idea of light or in fact radiations in general, being composed of particles or discrete Quanta was gaining wide popularity.
However, the very established Huygen’s Principle and the results of Young’s double slit experiments made it very clear that light was wave and not a flow particles.


随着光电效应、克朗普顿效应和玻尔原子模型的发展,由粒子或离散量子组成的光或实际上是辐射的概念越来越流行。然而,非常成熟的惠根原理和杨氏双缝实验的结果非常清楚地表明,光是波,而不是流动粒子。


The striking interference pattern observed by passing light through double slits was definitely a result of the wave nature of light. This again gave rise to the controversy of nature of light. In 1704 Newton had also suggested the particle nature of light by his corpuscular theory.

Neither of the two theories were adequate enough to explain all the phenomena associated with light. Thus scientists began to conclude that light has both wave and particle nature. In 1924, a French physicist, Louis de Broglie came up with a theory. He suggested that all particles in this universe is associated with wave nature also, i.e. everything in this world be it a small photon or a giant elephant, everything has an associated wave with itself, it is a different matter that the wave nature is noticeable or not. He assigned a wavelength to each matter with mass m and momentum p as

​通过使光穿过双狭缝观察到的引人注目的干涉图案无疑是光的波动性质的结果。这再次引起了关于光的本质的争论。1704年,牛顿也通过他的微粒理论提出了光的粒子性质。
这两种理论都不足以解释所有与光有关的现象。因此,科学家们开始得出结论,光具有波和粒子性质。1924年,法国物理学家路易斯·德布罗意提出了一个理论。他认为,宇宙中的所有粒子都与波的性质有关,即世界上的任何事物,无论是小光子还是大象,都有与自身相关的波,波的性质是否明显是另一回事。他给每种物质分配了一个波长,质量为m,动量为p


Where, h is Planck constant and p = mv, v is velocity of the body.

Thus due the huge mass of an elephant it has a very significant momentum and hence a very small wavelength, which we are unable to notice. However small particles such as electrons, etc. have very small mass and hence very noticeable wavelength or wave nature. This theory of de Broglie also helps us to explain the discrete existence of orbits in Bohr’s model of atom. An electron will exist in an orbit if its length is equal to integral multiple of its natural wavelength, if it is unable to complete its wavelength then that orbit will not exist.

其中,h是普朗克常数,p=mv,v是物体的速度。
因此,由于大象的巨大质量,它具有非常显著的动量,因此波长非常小,我们无法注意到。然而,诸如电子等小粒子具有非常小的质量,因此具有非常明显的波长或波性质。德布罗意的这一理论也有助于我们解释玻尔原子模型中轨道的离散存在。如果电子的长度等于其自然波长的整数倍,则电子将存在于轨道中,如果电子无法完成其波长,则该轨道将不存在。

Further developments by Davisson and Germer of electron diffraction from a crystal and a similar interference pattern obtained after bombarding a double slit with electrons had strengthen de Broglie’s matter wave theory or the wave particle duality theory.

Davidson和Germer对晶体中电子衍射的进一步发展,以及用电子轰击双缝后获得的类似干涉图,加强了德布罗意的物质波理论或波粒二象性理论。

Compton Effect

In the photoelectric effect, the light strikes on a metal in the form of beam of particles called photons. The energy of one photon contributes the work function energy of one electron as well as provides the kinetic energy to that emitted electron. These photons are the particle like behavior of light wave. Sir Albert Einstein proposed that light is the collective effect of huge number of energy packets called photon where each photon contains energy of hf. Where h is the Planck constant and f is the frequency of the light. This is a particle like behavior of light wave. The particle like behavior of light-wave or other electromagnetic wave can be explained by Compton effect.

In this experiment, one x ray beam of frequency fo and wavelength λo was incident on an electron. After hitting the electron by incident x-ray it is found that the electron and incident x-ray both are scattered into two different angles with respect to the axis of incident x-ray. This collision obeys the energy conversation principle just like collision of Newtonian’s particles. It was found that after the collision the electron gets accelerated in a particular direction and the incident x-ray is diffracted in another direction and it was also observed that diffracted ray has a different frequency and wavelength than the incident x-ray. As the energy of the photon varies with frequency it can be concluded that the incident x-ray losses an energy during collisions and the frequency of the diffracted ray is always less than that of the incident x-ray. This lost energy of x-ray photon contributes the kinetic energy for the movement of the electron. This collision of x-ray or its photon and electron is just like to Newtonian’s particles such as Billboard balls.

The energy of photon is given by


康普顿效应
       在光电效应中,光以称为光子的粒子束的形式照射在金属上。一个光子的能量贡献了一个电子的功函数能量,并为发射的电子提供动能。这些光子是光波的粒子状行为。阿尔伯特·爱因斯坦爵士提出,光是大量称为光子的能量包的集体效应,其中每个光子包含hf的能量,其中h是普朗克常数,f是光的频率。这是光波的粒子状行为。

       光波或其他电磁波的粒子状行为可以用康普顿效应来解释。在本实验中,一个频率为fo、波长为λo的x射线束入射到电子上。在入射x射线撞击电子后,发现电子和入射x射线都相对于入射x射线的轴散射成两个不同的角度。这种碰撞遵循能量守恒原理,就像牛顿粒子的碰撞一样。发现碰撞后电子在特定方向上加速,入射x射线在另一方向上衍射,还观察到衍射射线具有与入射x射线不同的频率和波长。由于光子的能量随频率变化,可以得出结论,入射x射线在碰撞期间损失能量,并且衍射射线的频率总是小于入射x射线的频率。x射线光子的能量损失为电子的运动提供了动能。x射线或其光子与电子的碰撞就像是牛顿的粒子,比如广告牌球。
光子的能量由下式给出:



Therefore the momentum of the photon can be proved as

因此,光子的动量可以证明为:


Which can be written as,



From equation (1) it can be concluded that a electromagnetic wave with wavelength λ will have the photon with momentum p.
From equation (2) it can be concluded that a particle with momentum p is associated with wavelength λ. That means wave has particle like characteristics, the particle on movement also exhibits wave like behaviour.

从方程(1)可以得出结论,波长λ的电磁波将具有动量p的光子。
从方程(2)可以得出结论,动量为p的粒子与波长λ相关。这意味着波具有类似粒子的特性,运动中的粒子也表现出类似波的行为。

As we already said, this conclusion was first drawn by De Broglie and hence this is known as De Broglie hypothesis. As the wavelength of the moving particle is expressed as

正如我们已经说过的,这个结论是德布罗意首先得出的,因此这被称为德布罗意假说。移动粒子的波长表示为:


Where, p is the momentum, h is Planck constant and wavelength λ is referred as De Broglie’s wavelength. De Broglie explained that as the electrons orbit around the nucleus it will also have the wave like behaviour along with its particle like characteristics.

其中,p为动量,h为普朗克常数,波长λ为德布罗意波长。德布罗意解释说,当电子围绕原子核运行时,它也将具有类似于波的行为以及类似于粒子的特性。

Divission and Germer Experiment

The wave nature of electron can be proved and established in many different ways but most popular experiment is Divission and Germer in the year of 1927. In this experiment they used a beam of accelerated electrons which normally strikes on the surface of a nickel block. They observed the pattern of scattered electrons after striking on the nickel block. They used an electron density monitor for this purpose. Although it was expected that the electron should be scattered after collision in different angle with respect to the axis of the incident electron beam but in the actual experiment it was found that the density of scattered electrons was more at particular angles than other. This angular distribution of the scattered electrons is very similar to an interference that of light diffraction. Hence this experiment clearly shows the existence of wave particle duality of electrons. The same principle can be applied to the proton and neutrons too.

除法与Germer实验
电子的波性质可以用许多不同的方法证明和建立,但最流行的实验是1927年的Division和Germer。在这个实验中,他们使用了一束加速电子,通常撞击镍块表面。他们在撞击镍块后观察到散射电子的图案。为此,他们使用了电子密度监测器。虽然预期电子在碰撞后应以相对于入射电子束轴的不同角度散射,但在实际实验中发现散射电子的密度在特定角度比其他角度更大。散射电子的角分布非常类似于光衍射的干涉。因此,这个实验清楚地表明了电子的波粒二象性的存在。同样的原理也适用于质子和中子。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

波粒二象性仿真理论(一) Wave Particle Duality Principle 的相关文章

  • 波粒二象性仿真理论(一) Wave Particle Duality Principle

    Wave Particle Duality Principle October 22 2020 by Electrical4U With the development of Photoelectric effect Crompton s
  • 【OpenFOAM】-interFoam-laminar-算例11-wave

    算例路径 OpenFOAM 8 tutorials multiphase interFoam laminar wave 算例描述 使用 interFoam 求解器的造波功能 学习目标 extrudeMesh 网格操作 了解 setWaves
  • JS插件:粒子动画

    1 canvas nest js 配置参数 2 particle js 安装导入 特定参数项 配置参数 JSON格式 3 Particleground js 安装导入 配置参数 1 canvas nest js 轻量 只有1 6 kb 只能
  • Mixing digital audio(混音数字音频),声音混合算法

    Mixing digital audio 大家可以看这篇文章Mixing digital audio
  • Python 从零开始制作自己的声音 - wave模块读写wav文件详解

    计算机经常被用于处理音频这种真实世界中的数据 声音经过采样 量化和编码后 存储在音频文件 如wav文件中 文章首先介绍wave模块的基础用法 再通过生成一定频率声波的算法实现 来深入讲解wave库的使用 目录 wave模块 wave ope
  • java 下mp3 转 pcm、wav

    mp3 转 pcm wav 由于MP3直接转为wav 容易出现文件大小为0k 时间缩短等问题 这里是通过先将mp3转成pcm 然后在通过pcm转成wav 下面直接上代码 先引入所需要的jar包
  • wav音频文件格式解析【个人笔记】(自用)

    目录 1 WAV格式 2 WAV的二进制格式解析 2 1 WAV文件格式 2 2 C语言解析wav文件 3 WAV文件语音数据的组织结构 4 总结 回到顶部 1 WAV格式 wav是微软开发的一种音频文件格式 注意 wav文件格式是无损音频
  • 如何将wav文件转换为浮动幅度

    所以我问了标题中的所有内容 我有一个 wav 文件 由 PyAudio 从输入音频编写 我想将其转换为与声级 振幅 相对应的浮点数据 以进行一些傅里叶变换等 有人有将 WAV 数据转换为 float 的想法吗 我已经找到了两种不错的方法来做
  • 将 3 字节立体声 WAV 文件转换为 numpy 数组

    我收到了一个连续水下录音的大型 WAV 文件 我想将其转换为 numpy 数组进行分析 我正在努力做到这一点 到目前为止我有 import numpy as np import scipy as sp import wave as wv i
  • 同时从麦克风录制音频并在Python中播放效果

    我的目标是通过笔记本电脑麦克风录制我的声音 并同时在 python 中添加效果 我需要的是类似于音乐效果踏板 您可以在其中连接吉他或麦克风 并添加混响 回声或失真等 我正在使用 pyaudio 和 wave 来录制和播放音频 使用 scik
  • 如何将 wav 文件转换为类似字节的对象?

    我正在尝试使用 Python 3 5 1 的 audioop 模块以编程方式分析 wav 文件以获取通道 持续时间 采样率 音量等 但是我找不到任何文档来描述如何将 wav 文件转换为 片段 参数它必须是一个类似字节的对象 有人可以帮忙吗
  • Android:使用Raw PCM创建Wave文件,Wave文件无法播放

    我已经为波形文件创建了标题 但创建的波形文件无法播放 我用过这个https ccrma stanford edu courses 422 projects WaveFormat https ccrma stanford edu course
  • 使用 PyDub 消除波形文件开头和结尾处的静音

    如何使用 PyDub 消除波形文件开头和结尾的静音 我想我应该逐段访问并检查它是否静音 但我无法做到 例如我有一个在开头 结尾或两者都有静音的波形文件 如下所示 我想删除文件开头和结尾的静音 例如我想导入它 sound AudioSegme
  • 通过socket发送wav文件

    我正在尝试通过套接字发送 wav 文件 我收到错误 TypeError must be string or buffer not instance waveFile wave open WAVE OUTPUT FILENAME rb my
  • Python从立体声波形文件中读取单个通道的数据

    我必须使用 Python 读取立体声波文件中的一个通道的数据 为此我用 scipy io 尝试过 import scipy io wavfile as wf import numpy def read path data wf read p
  • 将 OutputStream 转换为 ByteArrayOutputStream

    我正在尝试转换OutputStream to a ByteArrayOutput溪流 我无法找到任何关于如何做到这一点的明确简单的答案 这个问题是在 StackOverflow 上的问题标题中提出的 但问题的正文询问如何更改ByteArra
  • 播放从 url 检索到的声音内容?

    我正在从以下位置检索声音 http translate google com translate tts http translate google com translate tts 并将其写入 WAV 文件 当我双击该文件时 声音播放正
  • boto3 S3 对象解析

    我正在尝试编写一个 Python 脚本来处理存储在 S3 上的音频数据 我有一个 S3 对象 我正在使用它调用 def grabAudio filename directory obj s3client get object Bucket
  • AVAudioRecorder 未写出正确的 WAV 文件头

    我正在 iPhone 上开发一个项目 我使用 AVAudioRecorder 从设备麦克风录制音频 然后对录音进行操作 为了确保我正确地从文件中读取样本 我使用 python 的 wave 模块来查看它是否返回相同的样本 然而 当尝试打开
  • java中wav文件转换为字节数组

    我的项目是 阿塞拜疆语音的语音识别 我必须编写一个程序来转换wav文件到字节数组 如何将音频文件转换为byte 基本上如第一个答案中的片段所描述 但不是BufferedInputStream use AudioSystem getAudio

随机推荐