强大的4开关升降压BOB电源 可升可降能大能小

2023-11-15

原文来自公众号:工程师

基于电感器的开关架构电源有3中常见的拓扑结构,分别是BUCK降压电源BOOST升压电源以及BUCK-BOOST负压电源,今天介绍的第4中拓扑——4开关BOB电源,在手机、汽车、嵌入式等领域都有广泛应用,它的基本工作原理是怎样的呢?有什么优势呢?

一. 4开关拓扑

4开关BOB电源全称是BUCK or BOOST升降压电源,顾名思义,既可以降压,又可以升压,兼容BUCK和BOOST电源的功能。

下图是4开关BOB电源的拓扑示意图,4个开关带一个电感,通过控制开关的导通、断开的不同状态来衍生出不同的电源架构。

二. 降压模式

当S4处于常闭、S3处于常开状态时,反复开关的管子是S1和S2,这就构成了BUCK降压结构。下图就是BUCK的结构,有S1、S2两个工作管子,这种BUCK被称为同步BUCK,效率会高一些。有两种工作周期,1:S1闭合、S2断开,对电感L1充电,见下图绿色曲线;2:S1断开、S2闭合,电感对负载放电,见下图蓝色曲线。

将上图中的S2代替为二极管也可以起到降压作用,然而效率会降低一些,二极管会消耗一部分功率,这种结构被称为非同步BUCK,只有S1一个管子动作。当S1闭合时,对电感L1充电,见下图绿色曲线;当S1断开时,电感L1通过负载——>二极管D2进行放电,见下图蓝色曲线。

对于非同步BUCK,如果在上图中SW点开关节点位置测量电压,会发现一个奇怪的负电压,如下图红色圈圈中那样,这是因为二极管需要有一个导通低电压,一般是0.7V,就刚好出现这个小小的负电压。

在历史文章中有更详细的介绍:

《为什么BUCK降压电路会出现奇怪的负电压?》:

https://www.dianyuan.com/eestar/article-3210.html

BUCK的仿真文件获取方法,在公众号后台回复:BUCK仿真文件

BUCK的电路详细原理以及电感选型的详细内容参考以前的文章:

《DCDC BUCK电路原理详细分析》:

https://www.dianyuan.com/eestar/article-1574.html

《怎么选择BUCK降压电源的电感?》:

https://www.dianyuan.com/eestar/article-1299.html

三. 升压模式

当S1处于常闭、S2处于常开状态时,反复开关的管子是S3和S4,这就构成了boost升压结构。下图就是BOOST的结构,有S3、S4两个工作管子,有两种工作周期,1:S3闭合、S4断开,对电感L1充电,见下图蓝色曲线;2:S3断开、S4闭合,电感对负载放电,见下图绿色曲线。

同样地,也可以把S4代替为二极管,依然实现升压结构。

总而言之,4开关架构电源,通过对开关进行配置,可以自由工作在降压或者是升压的模式。

BOOST的仿真文件获取方法,在公众号后台回复:BOOST仿真文件

BUCK的电路原理以及电感选型的详细内容参考以前的文章:

《BOOST升压电路原理详解》

https://www.dianyuan.com/eestar/article-1698.html

《怎么选择boost升压电路的电感?只要三个公式》

https://www.dianyuan.com/eestar/article-2890.html

四. 为什么需要BOB?

我们为什么需要BOB电源,这种电源有什么优势?

有一些对于电源噪声要求比较高的场合,我们倾向于使用低噪声的LDO,LDO的输入一般通过开关电源提供,最典型的架构是BUCK+LDO或者是BOOST+LDO。为了达到对电源的高效利用,电源系统中往往一个开关电源后面会接多路LDO,见下面示意图,比如开关电源的输入是3.0V,需要搭配多种LDO电源。

有同学会说,为什么不直接用一个BOOST声压电源来覆盖这么多种电源需求呢?

如果使用BOOST这种一刀切满足所有LDO要求的方法,假如高电压的负载没有工作时,见下图红色部分,依然使用BOOST的话,绿色LDO会额外增加功耗,因为LDO功耗与输入和输出的压差成正比。对于下图中,BOOST输出是3.5V可以满足所有LDO的需求,但是在3.3/2.9/2.8等LDO关闭时,BOOST继续输出3.5V的话,就会给LDO带来额外功耗,LDO1.0的功耗是(3.5-1.0)*Io(Io是LDO的负载电流),无论怎么降低BOOST的输出电源,它也不会低于3.0V。

不要小看这些功耗,对于移动嵌入式等产品而言,续航就是生命!

所以,升降压电源就给我们带来了更好的选择,假如高电压LDO没有工作时,升降压电源可以通过BUCK模式降低自己的输出到1.2V,这样的话LDO的功耗就会大大降低,

((1.2-1.0)*Io)/((3.5-1.0)*Io)=8%,这种架构的功耗只有原来功耗的8%,收益很明显,当然实际的功耗收益和负载的工作状态息息相关。

以上就是4开关电源的工作原理,你学废了吗?

感谢点赞、分享、在看,让知识变得更简单

限时免费扫码进群,交流更多行业技术

推荐阅读▼

电池、电源

硬件文章精选

华为海思软硬件开发资料

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

强大的4开关升降压BOB电源 可升可降能大能小 的相关文章

  • Alice 与 Bob 的游戏 (概率DP)

    题目描述 Alice 和 Bob 两个人正在玩一个游戏 xff0c 游戏有很多种任务 xff0c 难度为 p 的任务 xff08 p是正整数 xff09 xff0c 有 1 2 p 的概率完成并得到 2 p 1 分 xff0c 如果完成不了
  • 这几天心里颇不宁静,采的不是信号,而是寂寞

    原文来自微信公众号 工程师看海 这几天心里颇不宁静 今晚在院子里坐着乘凉 忽然想起往日一同攻坚的战友 在这满月的光里 该是另一番样子吧 我们制定的uV级别信号的采集方案 从原理到模拟环境测试 一切都OK 然而真正到现场采集信号时却发现 压根
  • Type-C协议简介(CC检测原理)

    1 简介 越来越多的手机开始采用Type C作为充电和通信端口 Type C连接器实物和PIN定义如下图 目录 1 简介 Type C连接器中有两个管脚CC1和CC2 他们用于识别连接器的插入方向 以及不同的插入设备 本文介绍CC的基本识别
  • 电源完整性的很好的解释

    电源和地层大块平面间构成了谐振腔 高速数字信号经过时 犹如快艇在湖面掀起一阵波浪 电源地之间电压起了波动 既然是谐振 机械上叫共振 就要固有频率 这个固有频率是与电源和地平面的形状 中间的介质参数 介电常数 损耗 厚度 有关系的 一旦这些参
  • 为什么你的LDO输出不稳定?

    原文来自微信公众号 工程师看海 前一阵朋友和我说当初用某型号LDO时 发现输出异常 仔细阅读datasheet后 更换输出电容解决 LDO的输出电容对性能至关重要 除了会提高电源抑制比PSRR抑制噪声外 对环路稳定性也至关重要 电容除了容值
  • Python pikepdf 打包exe 报错 ModuleNotFoundError: No module named ‘pikepdf._cpphelpers’

    微信公众号 工程师看海 最近使用pyinstaller 将pathon的 py文件打包到windows平台 生成可执行文件时遇到了一个问题 打包后的exe可执行文件在运行过程中报 ModuleNotFoundError No module
  • buck芯片能产生负压吗?

    buck芯片能产生负压吗 1 前言 2 分析 1 前言 有的运放需要正负压供电 负压的产生一般是由电源芯片处理 将正压转换为负压 那么问题来了 buck能产生负压么 2 分析 开关电源有三种基本拓扑 buck boost buck boos
  • 同步异步BUCK研究

    目录 一 同步时钟 二 异步BUCK电路 1 基本公式推导 2 电感选型计算 三 同步BUCK电路 四 同步异步BUCK电路对比 前言 在硬件设计中 电源模块基本都会接触到 DC DC拓扑电路又是最常见的 所以深入理解DC DC电路至关重要
  • 自举电路原理分析

    原文来自公众号 工程师看海 自举电路字面意思是自己把自己抬起来的电路 是利用自举升压电容的升压电路 是电子电路中常见的电路之一 我们经常在IC外围器件中看到自举电容 比如下图同步降压转换器 BUCK 电路中 Cboot就是自举电容 为什么要
  • 信号反射与反弹图那些事

    原文来自公众号 工程师看海 我们总说阻抗不连续会导致信号反射 今天介绍下信号反射的过程与反弹图 如下图所示 对于传输线而言 当信号从左向右传播时 如果走线突然加粗 那么对应的单位长度电感和电位长度电容就会发生变化 使得阻抗突变 Z1 Z2
  • 哪些因素影响阻抗控制?网格铜的妙用

    原文来自微信公众号 工程师看海 前文介绍了传输线 特性阻抗以及信号的反射概念 如果阻抗不连续信号会发生反射严重时将会导致系统不能正常工作 都有哪些参数会影响阻抗呢 了解相关参数后我们就可以知道有哪些方法来控制阻抗了 线宽W 走线加宽 则单位
  • 【硬件】对电源模块的梳理(包括DC-DC、LDO等不同芯片应用电路)

    目录 1 DC DC 变换器 ME3116 24V转5V JW5017S 18V转5V CX802 输入电压 4 5 80V 输出电压5V 输出电流1 2A LM2596S ADJ 输入电压3 3 40V 输出电压5V 2 LDO 低压差
  • 电源系列2:LDO 基本 原理(二)

    公众号 工程师看海 后台回复 LDO仿真文件 远山看海 LDO基本原理介绍 一 zhuanlan zhihu com NMOS LDO工作简介 下图是一个NMOS LDO的基本框图 NMOS LDO一般也工作在饱和区 特殊时会在可变电阻区
  • 怎么选择boost升压电路的电感?只要三个公式

    原文来自公众号 工程师看海 添加微信 chunhou0820 获取仿真文件 BOOST电源架构是一种非常经典的升压电源方案 它是利用开关管开通和关断的时间比率 维持稳定输出的一种开关电源 它以小型 轻量和高效率的特点被广泛应用在各行业电子设
  • 电磁屏蔽知多少?

    原文来自公众号 工程师看海 不管什么电子产品 EMC始终是其需要面对的问题 EMC全拼是Electromagnetic Compatibility即电磁兼容性 EMC分为EMS electromagnetic susceptibility
  • 基本稳压电路

    经过整流后的电源具有较大的电压纹波 单靠调节滤波电容不能明显改善输出电源纹波特性 因此需要采用稳压电路来减小输出电源的纹波 若直将稳压管接至负载输出 则稳压管的工作特性受负载影响较大 甚至会出现不能正常工作的情况 采用下图所示的稳压电路则能
  • 开关电源环路学习笔记(6)-开关变换器传递函数Gvd(s)推导过程

    终于到了最关键的环节 也是最难的环节 如何求出开关级的传递函数 也就是下图这一级 哎 不得不说 太难了 不过没办法 先前夸下海口 跟兄弟们说我要把环路搞清楚 现在搞不动也得搞啊 这一级之所以这么难 主要是有开关元器件 本身是非线性的 当然了
  • 你还分不清谐波失真、总谐波失真、总谐波失真加噪声吗?

    原文来自公众号 工程师看海 公众号后台回复获取资料 THD 什么是信号失真 时域上测量系统的输出波形应该与输入波形精确一致 只是幅值放大 时间延迟 这称为不失真测量 通常放大电路的输入信号是复杂的多频信号 如果放大电路对信号的不同频率分量的
  • 开关电源Buck电路CCM及DCM工作模式

    一 Buck开关型调整器 二 CCM及DCM定义 1 CCM ContinuousConduction Mode 连续导通模式 在一个开关周期内 电感电流从不会到0 或者说电感从不 复位 意味着在开关周期内电感磁通从不回到0 功率管闭合时
  • 异步Buck和同步Buck的特点

    1 介绍 随着时代的发展 工业 车载 通信 消费类等产品都提出了小型化 智能化的需求 相应的 对于这些系统中的电源模块提出了小型化的要求 目前 市场上依然存在很多异步Buck电源管理芯片使用的场景 针对这些应用 采用同步Buck电源管理芯片

随机推荐