快速排序(三种算法实现和非递归实现)

2023-11-20

快速排序(Quick Sort)是对冒泡排序的一种改进,基本思想是选取一个记录作为枢轴,经过一趟排序,将整段序列分为两个部分,其中一部分的值都小于枢轴,另一部分都大于枢轴。然后继续对这两部分继续进行排序,从而使整个序列达到有序。

递归实现:

void QuickSort(int* array,int left,int right)
{
	assert(array);
	if(left >= right)//表示已经完成一个组
	{
		return;
	}
	int index = PartSort(array,left,right);//枢轴的位置
	QuickSort(array,left,index - 1);
	QuickSort(array,index + 1,right);
}

PartSort()函数是进行一次快排的算法。
对于快速排序的一次排序,有很多种算法,我这里列举三种。

左右指针法

  1. 选取一个关键字(key)作为枢轴,一般取整组记录的第一个数/最后一个,这里采用选取序列最后一个数为枢轴。
  2. 设置两个变量left = 0;right = N - 1;
  3. 从left一直向后走,直到找到一个大于key的值,right从后至前,直至找到一个小于key的值,然后交换这两个数。
  4. 重复第三步,一直往后找,直到left和right相遇,这时将key放置left的位置即可。

这里写图片描述

当left >= right时,一趟快速排序就完成了,这时将Key和array[left]的值进行一次交换。
一次快排的结果:4 1 3 0 2 5 8 6 7 9

基于这种思想,可以写出代码:

int PartSort(int* array,int left,int right)
{
	int& key = array[right];
	while(left < right)
	{
		while(left < right && array[left] <= key)
		{
			++left;
		}
		while(left < right && array[right] >= key)
		{
			--right;
		}
		swap(array[left],array[right]);
	}
	swap(array[left],key);
	return left;
}

问题:下面的代码为什么还要判断left < right?

while(left < right && array[left] <= key)

key是整段序列最后一个,right是key前一个位置,如果array[right]这个位置的值和key相等,满足array[left] <= key,然后++left,这时候left会走到key的下标处。

###挖坑法

  1. 选取一个关键字(key)作为枢轴,一般取整组记录的第一个数/最后一个,这里采用选取序列最后一个数为枢轴,也是初始的坑位。
  2. 设置两个变量left = 0;right = N - 1;
  3. 从left一直向后走,直到找到一个大于key的值,然后将该数放入坑中,坑位变成了array[left]。
  4. right一直向前走,直到找到一个小于key的值,然后将该数放入坑中,坑位变成了array[right]。
  5. 重复3和4的步骤,直到left和right相遇,然后将key放入最后一个坑位。

这里写图片描述

当left >= right时,将key放入最后一个坑,就完成了一次排序。
注意,left走的时候right是不动的,反之亦然。因为left先走,所有最后一个坑肯定在array[right]。

写出代码:

int PartSort(int* array,int left,int right)
{
	int key = array[right];
	while(left < right)
	{
		while(left < right && array[left] <= key)
		{
			++left;
		}
		array[right] = array[left];
		while(left < right && array[right] >= key)
		{
			--right;
		}
		array[left] = array[right];	 
	}
	array[right] = key;
	return right;
}

###前后指针法

  1. 定义变量cur指向序列的开头,定义变量pre指向cur的前一个位置。
  2. 当array[cur] < key时,cur和pre同时往后走,如果array[cur]>key,cur往后走,pre留在大于key的数值前一个位置。
  3. 当array[cur]再次 < key时,交换array[cur]和array[pre]。

通俗一点就是,在没找到大于key值前,pre永远紧跟cur,遇到大的两者之间机会拉开差距,中间差的肯定是连续的大于key的值,当再次遇到小于key的值时,交换两个下标对应的值就好了。

带着这种思想,看着图示应该就能理解了。
这里写图片描述

下面是实现代码:

int PartSort(int* array,int left,int right)
{
	if(left < right){
		int key = array[right];
		int cur = left;
		int pre = cur - 1;
		while(cur < right)
		{
			while(array[cur] < key && ++pre != cur)//如果找到小于key的值,并且cur和pre之间有距离时则进行交换。注意两个条件的先后位置不能更换,可以参照评论中的解释
			{
				swap(array[cur],array[pre]);
			}
			++cur;
		}
		swap(array[++pre],array[right]);
		return pre;
	}
	return -1;
}

最后的前后指针法思路有点绕,多思考一下就好了。它最大的特点就是,左右指针法和挖坑法只能针对顺序序列进行排序,如果是对一个链表进行排序, 就无用武之地了。

所以记住了,前后指针这个特点!


###快速排序的优化

首先快排的思想是找一个枢轴,然后以枢轴为中介线,一遍都小于它,另一边都大于它,然后对两段区间继续划分,那么枢轴的选取就很关键。

1、三数取中法
上面的代码思想都是直接拿序列的最后一个值作为枢轴,如果最后这个值刚好是整段序列最大或者最小的值,那么这次划分就是没意义的。
所以当序列是正序或者逆序时,每次选到的枢轴都是没有起到划分的作用。快排的效率会极速退化。

所以可以每次在选枢轴时,在序列的第一,中间,最后三个值里面选一个中间值出来作为枢轴,保证每次划分接近均等。

2、直接插入
由于是递归程序,每一次递归都要开辟栈帧,当递归到序列里的值不是很多时,我们可以采用直接插入排序来完成,从而避免这些栈帧的消耗。

整个代码:

//三数取中
int GetMid(int* array,int left,int right)
{
    assert(array);
    int mid = left + ((right - left)>>1);
    if(array[left] <= array[right])
    {
        if(array[mid] <  array[left])
            return left;
        else if(array[mid] > array[right])
            return right;
        else
            return mid;
    }
    else
    {
        if(array[mid] < array[right])
            return right;
        else if(array[mid] > array[left])
            return left;
        else
            return mid;
    }

}

//左右指针法
int PartSort1(int* array,int left,int right)
{
    assert(array);
    int mid = GetMid(array,left,right);
    swap(array[mid],array[right]);
    
    int& key = array[right];
    while(left < right)
    {
        while(left < right && array[left] <= key)//因为有可能有相同的值,防止越界,所以加上left < right
            ++left;
        while(left < right && array[right] >= key)
            --right;

        swap(array[left],array[right]);
    }

    swap(array[left],key);
    return left;
}

//挖坑法
int PartSort2(int* array,int left,int right)
{
    assert(array);
    int mid = GetMid(array,left,right);
    swap(array[mid],array[right]);
    
    int key = array[right];
    while(left < right)
    {
        while(left < right && array[left] <= key)
            ++left;
        array[right] = array[left];
       
        while(left < right && array[right] >= key)
            --right;
        array[left] = array[right];
    }
    array[right] = key;
    return right;
}

//前后指针法
int PartSort3(int* array,int left,int right)
{
    assert(array);
    int mid = GetMid(array,left,right);
	swap(array[mid],array[right]);
    if(left < right){
	    int key = array[right];
	    int cur = left;
	    int pre = left - 1;
	    while(cur < right)
	    {
	         while(array[cur] < key && ++pre != cur)
	         {
	             swap(array[cur],array[pre]);
	         }
	            ++cur;
	    }
	        swap(array[++pre],array[right]);
	        return pre;
	}
	return -1;
}

void QuickSort(int* array,int left,int right)
{
    assert(array);
    if(left >= right)
        return;

	//当序列较短时,采用直接插入
    if((right - left) <= 5)
    InsertSort(array,right-left+1);
    
    int index = PartSort3(array,left,right);
    QuickSort(array,left,index-1);
    QuickSort(array,index+1,right);
}

int main()
{
	int array[] = {4,1,7,6,9,2,8,0,3,5};
	QuickSort(array,0,sizeof(array)/sizeof(array[0]) -1);//因为传的是区间,所以这里要 - 1;
}

非递归实现

递归的算法主要是在划分子区间,如果要非递归实现快排,只要使用一个栈来保存区间就可以了。
一般将递归程序改成非递归首先想到的就是使用栈,因为递归本身就是一个压栈的过程。

void QuickSortNotR(int* array,int left,int right)
{
	assert(array);
	stack<int> s;
	s.push(left);
	s.push(right);//后入的right,所以要先拿right
	while(!s.empty)//栈不为空
	{
		int right = s.top();
		s.pop();
		int left = s.top();
		s.pop();
		
		int index = PartSort(array,left,right);
		if((index - 1) > left)//左子序列
		{
			s.push(left);
			s.push(index - 1);
		}
		if((index + 1) < right)//右子序列
		{
			s.push(index + 1);
			s.push(right);
		}
	}
}

上面就是关于快速排序的一些知识点,如果哪里有错误,还望指出。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

快速排序(三种算法实现和非递归实现) 的相关文章

  • 数组实例解析3(杨辉三角)

    根据用户输入的行数n输出对应行数的杨辉三角 具体如下 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 public class ArrayTraingleTest public static void
  • C语言:二分查找(折半查找),冒泡排序

    目录 一 二分查找 二分查找的需注意的细节 二 冒泡排序 冒泡排序需注意的细节 本篇博客详细讲解常用的几个方法 分别是二分查找和冒泡排序法 一 二分查找 二分查找 意思就是每次都分为两部分 将查找的数字和中间数字相比 判断大小后确定所查找数
  • C语言库函数——快排函数qsort()

    目录 一 函数原型 二 函数介绍 三 函数使用 常见写法 比较函数 四 函数实例 1 int型数组 2 double型数组 3 char型数组 4 字符串 5 结构体 一级结构 二级结构 一 函数原型 void qsort void bas
  • 算法 - 快速排序(C#)

    csharp view plain copy print
  • 【数据结构】——八大排序

    文章目录 1 插入排序 2 冒泡排序 3 希尔排序 4 选择排序 5 快速排序 快排优化 递归改非递归 6 堆排序 7 归并排序 递归归并排序 改成非递归 8 计数排序 9 题目 总结 排序的时间检验 对于不同排序的时间复杂度分析 1 插入
  • 8-13外部排序-败者树

    败者树是树形选择排序的一种变体 可视为一棵完全二叉树 通过败者树 可以在k个归并段中选出最小关键字所需要的关键字对比次数更少 绿色为叶子结点 存放初始数据 黑色为失败结点 蓝色为胜出结点 一 基本过程 以下按从小到大的方式构建 1 从8个归
  • C++ 快速排序

    快速排序是比较常用的一种排序 平均时间复杂度为O nlogn 最坏的时间复杂度为O n 话不多说 上代码 include
  • c++用vector先按学生的年级排序,再按学生的分数排序算法

    VectorSort cpp 定义控制台应用程序的入口点 include stdafx h include stdio h include string h include
  • C++容器排序算法的简单应用

    功能实现 1 去掉所有重复的单词 2 按照单词的长度进行排序 3 统计长度等于或者超过6个字符的单词个数 4 按照单词的长度顺序进行输出 include
  • 非递归算法——快速排序、归并排序

    哈喽大家好 我是保护小周 本期为大家带来的是常见排序算法中的快速排序 归并排序 非递归算法 分享所有源代码 粘贴即可运行 保姆级讲述 包您一看就会 快来试试吧 目录 一 递归的缺陷 1 1 栈是什么 数据结构 栈 又是什么 他们之间有什么区
  • 堆排序专题-把一个数组变成大根堆的两种方式和根据大根堆来实现对数组的排序,

    什么是堆排序 堆排序 Heap Sort 是一种基于二叉堆数据结构的排序算法 它的基本思想是将待排序的数组构建成一个大根堆或小根堆 然后依次将堆顶元素与堆尾元素交换 并重新调整堆 直到整个数组有序 堆排序的时间复杂度为O nlogn 是一种
  • GIF演示排序算法

    最近在准备笔试 面试 看了不少关于排序算法的知识 总感觉代码有余 直观不足 所以想利用直观的GIF动图来演示各种排序算法 1 插入排序 Insertion Sort 1 1算法简介 插入排序 Insertion Sort 的算法描述是一种简
  • Insertion插入排序

    原谅我接着偷懒 是真的没有什么写的内容了啊 好怀疑他们那些大佬是怎么那么多的文章和技术分享的 自闭中ing 最好情况的时间复杂度是 O n 最坏情况的时间复杂度是 O n2 然而时间复杂度这个指标看的是最坏的情况 而不是最好的情况 所以插入
  • QString转const char*

    QString str hello world 转成const char const char arr str toStdString c str const char arr str toLatin1 constData toUtf8 转
  • C语言排序算法实现

    C语言实现各种排序算法 冒泡排序 选择排序 插入排序 希尔排序 插入方式 非交换方式 快速排序 归并排序 分治思想 基数排序 桶排序 基数排序的基本思想 典型的空间换时间方式 冒泡排序 include
  • 【数据结构】带你手撕八大排序

    目录 一 排序的基础知识 1 排序的概念 2 排序的应用 3 常见的排序算法 二 八大排序的实现 1 插入排序 直接插入排序 直接插入排序的特性总结 2 插入排序 希尔排序 希尔排序的特性总结 3 选择排序 直接选择排序 直接插入排序特性总
  • 分治-归并排序

    文章目录 315 计算右侧小于当前元素的个数 1 题目 2 算法原理 3 代码实现 493 翻转对
  • 八大排序(希尔排序)

    上篇文章我们来看了看插入排序是怎么实现的 本章内容就是在插入排序的基础上完成希尔排序 希尔排序是一个比较强大的排序 我们希尔排序的时间复杂度是比较难算的 这里直接给出的结论就是时间复杂度就是O N 1 3 比较难算的原因就是我们每一次的次数
  • 设计与算法:全排列

    描述 给定一个由不同的小写字母组成的字符串 输出这个字符串的所有全排列 我们假设对于小写字母有 a lt b lt lt y lt z 而且给定的字符串中的字母已经按照从小到大的顺序排列 输入 输入只有一行 是一个由不同的小写字母组成的字符
  • 冒泡排序/选择排序/插入排序/快速排序/归并排序/桶排序/堆排序/希尔排序/计数排序/基数排序/二分查找/广度优先搜索/深度优先搜索

    排序算法 冒泡排序 Bubble Sort 通过重复地比较相邻的元素并交换它们 使得最大 或最小 的元素逐渐移动到列表的一端 从而实现排序 选择排序 Selection Sort 在未排序的部分中 选择最小 或最大 的元素 并将其放置在已排

随机推荐

  • Python代码实现发送163邮件(IMAP服务)

    1 注册163邮箱并登陆 https mail 163 com 2 开启 IMAP IMAP 服务 3 编写代码 进行发邮件操作 import smtplib from email mime text import MIMEText fro
  • 用MATLAB实现人脸识别

    1 人脸识别技术的细节 一般来说 人脸识别系统包括图像提取 人脸定位 图形预处理 以及人脸识别 身份确认或者身份查找 系统输入一般是一张或者一系列含有未确定身份的人脸图像 以及人脸数据库中的若干已知身份的人脸图像或者相应的编码 而其输出则是
  • 【C/C++】 - Linux下查找函数头文件 以及 man命令拓展

    背景 比如现在需要找C语言 sleep函数的头文件 使用man来查找 可以先man sleep 可以发现出来的默认是sleep 1 是一个User Commands 明显不是我们需要的 这里提示了 看sleep 3 那我们查看下sleep
  • VC++ MapWinGis篇(三)

    添加百度图层 BaiduMapProvider h pragma once include BaseProvider h include BaiduProjection h include
  • Open3D(C++)实现建筑物点云立面和平面分割提取

    Open3D C 实现建筑物点云立面和平面分割提取 近年来 点云技术在城市规划 机器人地图构建等领域得到广泛应用 本篇文章将介绍如何利用Open3D C 库实现建筑物点云立面和平面分割提取 准备工作 首先需要编译安装Open3D库 本文使用
  • 如何写接口测试用例

    一 接口测试用例基础知识 1 接口测试要测的是什么 接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互 测试的重点是要检查数据的交换 传递和控制管理过程 以及系统间的相互逻辑依赖关系等 2 接口测试的意义 按照分层测试模型
  • iOS App打包上架详细流程

    一 前言 作为一名iOS开发者 把辛辛苦苦开发出来的App上传到App Store是件必要的事 但是很多人还是不知道该怎么上传到App Store上 下面就来详细讲解一下具体流程步骤 二 准备 一个已付费的开发者账号 可分为 账号类型分为个
  • 在Qt Creator中实现Android设备调试

    在Qt Creator中实现Android设备调试 要在Qt Creator中调试和运行Android应用程序 需要先连接设备并设置Qt Creator以使用适当的工具链 本文将介绍如何在Qt Creator中连接Android设备并配置Q
  • STM32的FSMC地址线对应关系通俗易懂解读和和驱动TFT-LCD的原理

    STM32的FSMC地址线对应关系通俗易懂解读和和驱动TFT LCD的原理 当 Bank接的是 8 位宽度存储器的时候 HADDR 25 0 对应FSMC A 25 0 当 Bank接的是 16 位宽度存储器的时候 HADDR 25 1 对
  • 内聚、耦合

    一 耦合 内聚的了解 看懂就行 不用强背 那么什么是耦合 什么是内聚呢 我来做个解释 内聚性 又称块内联系 指模块的功能强度的度量 即一个模块内元素彼此之间结合的紧密程度的度量 若一个程序之间各元素之间 程序段之间 联系紧密 则内聚性就高
  • Maven--快照(SNAPSHOT)版本介绍

    Maven快照 SNAPSHOT 版本介绍 在 Maven 中 任何一个项目和构件都必须有自己的版本 版本的值可能是 1 0 0 1 0 alpha 4 1 3 SNAPSHOT 等 其中 1 0 0 1 0 alpha 4 是稳定的发布版
  • Python实现数值列表(数组)的逆置输出

    题目描述 输入10个数字 然后逆序输出 输入 十个整数 输出 逆序输出 空格分开 样例输入 1 2 3 4 5 6 7 8 9 0 样例输出 0 9 8 7 6 5 4 3 2 1 arr list map int input split
  • mgrid

    numpy中的一个函数叫mgrid 例子 import numpy as np X Y np mgrid 0 1 1 1 7 0 1 1 1 7 print X shape print X print Y shape print Y 生成两
  • 分配操作菜单

    目录 概述 介绍 数据库 后端 前端 效果展示 概述 在写后台管理系统时 我们可以根据不同的登录人 给予不同的功能菜单 如 给楼栋管理员登录时分配 楼栋管理 宿舍管理 所以在数据库就要创建 1 登录人与角色表 2再给角色表分配操作菜单 登录
  • va_start和va_end使用详解

    转载于 http www cnblogs com hanyonglu archive 2011 05 07 2039916 html 本文主要介绍va start和va end的使用及原理 在以前的一篇帖子Format MessageBox
  • 工作日记NO.13

    1 执行机安装Qt 2 编译精简Qt5 15 X库 3 研究liadwg项目 尝试编译
  • 元宇宙与数字孪生有区别

    在元宇宙爆红之前 有一项技术已经慢慢渗透到各行各业之中 它可以逼真 实时地还原现实世界 它就是 数字孪生 目前很多人认为元宇宙与数字孪生的区别不大 元宇宙是数字孪生在技术层面的进阶与优化 其实不然 元宇宙和数字孪生虽然都属于用数字技术构建虚
  • 【廖雪峰python入门笔记】字符串_转义字符的使用

    转义字符的使用 字符串可以用 或者 括起来表示 如果字符串本身包含 怎么办 比如我们要表示字符串 I m OK 这时 可以用 括起来表示 I m OK 类似的 如果字符串包含 我们就可以用 括起来表示 Learn Python in imo
  • Qt 教程(传智教育)

    1 一个简单的 Qt 应用程序 Qt一个类对应一个头文件 类名就是头文件名 QApplication 应用程序类 管理图形用户界面应用程序的控制流和主要设置 是 Qt 的整个后台管理的命脉 它包含主事件循环 在其中来自窗口系统和其它资源的所
  • 快速排序(三种算法实现和非递归实现)

    快速排序 Quick Sort 是对冒泡排序的一种改进 基本思想是选取一个记录作为枢轴 经过一趟排序 将整段序列分为两个部分 其中一部分的值都小于枢轴 另一部分都大于枢轴 然后继续对这两部分继续进行排序 从而使整个序列达到有序 递归实现 v