深度学习求解微分方程系列五:PINN求解Navier-Stokes方程正逆问题

2023-05-16

下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的二维Navier-Stokes方程。

内嵌物理知识神经网络(PINN)入门及相关论文
深度学习求解微分方程系列一:PINN求解框架(Poisson 1d)
深度学习求解微分方程系列二:PINN求解burger方程正问题
深度学习求解微分方程系列三:PINN求解burger方程逆问题
深度学习求解微分方程系列四:基于自适应激活函数PINN求解burger方程逆问题
深度学习求解微分方程系列五:PINN求解Navier-Stokes方程正逆问题

1.PINN简介

神经网络作为一种强大的信息处理工具在计算机视觉、生物医学、 油气工程领域得到广泛应用, 引发多领域技术变革.。深度学习网络具有非常强的学习能力, 不仅能发现物理规律, 还能求解偏微分方程.。近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN)是一种科学机器在传统数值领域的应用方法,能够用于解决与偏微分方程 (PDE) 相关的各种问题,包括方程求解、参数反演、模型发现、控制与优化等。

2.PINN方法

PINN的主要思想如图1,先构建一个输出结果为 u ^ \hat{u} u^的神经网络,将其作为PDE解的代理模型,将PDE信息作为约束,编码到神经网络损失函数中进行训练。损失函数主要包括4部分:偏微分结构损失(PDE loss),边值条件损失(BC loss)、初值条件损失(IC loss)以及真实数据条件损失(Data loss)。
在这里插入图片描述

图1:PINN示意图

特别的,考虑下面这个的PDE问题,其中PDE的解 u ( x ) u(x) u(x) Ω ⊂ R d \Omega \subset \mathbb{R}^{d} ΩRd定义,其中 x = ( x 1 , … , x d ) \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) x=(x1,,xd)
f ( x ; ∂ u ∂ x 1 , … , ∂ u ∂ x d ; ∂ 2 u ∂ x 1 ∂ x 1 , … , ∂ 2 u ∂ x 1 ∂ x d ) = 0 , x ∈ Ω f\left(\mathbf{x} ; \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}} ; \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} u}{\partial x_{1} \partial x_{d}} \right)=0, \quad \mathbf{x} \in \Omega f(x;x1u,,xdu;x1x12u,,x1xd2u)=0,xΩ
同时,满足下面的边界
B ( u , x ) = 0  on  ∂ Ω \mathcal{B}(u, \mathbf{x})=0 \quad \text { on } \quad \partial \Omega B(u,x)=0 on Ω

PINN求解过程主要包括:

  • 第一步,首先定义D层全连接层的神经网络模型:
    N Θ : = L D ∘ σ ∘ L D − 1 ∘ σ ∘ ⋯ ∘ σ ∘ L 1 N_{\Theta}:=L_D \circ \sigma \circ L_{D-1} \circ \sigma \circ \cdots \circ \sigma \circ L_1 NΘ:=LDσLD1σσL1
    式中:
    L 1 ( x ) : = W 1 x + b 1 , W 1 ∈ R d 1 × d , b 1 ∈ R d 1 L i ( x ) : = W i x + b i , W i ∈ R d i × d i − 1 , b i ∈ R d i , ∀ i = 2 , 3 , ⋯ D − 1 , L D ( x ) : = W D x + b D , W D ∈ R N × d D − 1 , b D ∈ R N . \begin{aligned} L_1(x) &:=W_1 x+b_1, \quad W_1 \in \mathbb{R}^{d_1 \times d}, b_1 \in \mathbb{R}^{d_1} \\ L_i(x) &:=W_i x+b_i, \quad W_i \in \mathbb{R}^{d_i \times d_{i-1}}, b_i \in \mathbb{R}^{d_i}, \forall i=2,3, \cdots D-1, \\ L_D(x) &:=W_D x+b_D, \quad W_D \in \mathbb{R}^{N \times d_{D-1}}, b_D \in \mathbb{R}^N . \end{aligned} L1(x)Li(x)LD(x):=W1x+b1,W1Rd1×d,b1Rd1:=Wix+bi,WiRdi×di1,biRdi,i=2,3,D1,:=WDx+bD,WDRN×dD1,bDRN.
    以及 σ \sigma σ 为激活函数, W W W b b b 为权重和偏差参数。
  • 第二步,为了衡量神经网络 u ^ \hat{u} u^和约束之间的差异,考虑损失函数定义:
    L ( θ ) = w f L P D E ( θ ; T f ) + w i L I C ( θ ; T i ) + w b L B C ( θ , ; T b ) + w d L D a t a ( θ , ; T d a t a ) \mathcal{L}\left(\boldsymbol{\theta}\right)=w_{f} \mathcal{L}_{PDE}\left(\boldsymbol{\theta}; \mathcal{T}_{f}\right)+w_{i} \mathcal{L}_{IC}\left(\boldsymbol{\theta} ; \mathcal{T}_{i}\right)+w_{b} \mathcal{L}_{BC}\left(\boldsymbol{\theta},; \mathcal{T}_{b}\right)+w_{d} \mathcal{L}_{Data}\left(\boldsymbol{\theta},; \mathcal{T}_{data}\right) L(θ)=wfLPDE(θ;Tf)+wiLIC(θ;Ti)+wbLBC(θ,;Tb)+wdLData(θ,;Tdata)
    式中:
    L P D E ( θ ; T f ) = 1 ∣ T f ∣ ∑ x ∈ T f ∥ f ( x ; ∂ u ^ ∂ x 1 , … , ∂ u ^ ∂ x d ; ∂ 2 u ^ ∂ x 1 ∂ x 1 , … , ∂ 2 u ^ ∂ x 1 ∂ x d ) ∥ 2 2 L I C ( θ ; T i ) = 1 ∣ T i ∣ ∑ x ∈ T i ∥ u ^ ( x ) − u ( x ) ∥ 2 2 L B C ( θ ; T b ) = 1 ∣ T b ∣ ∑ x ∈ T b ∥ B ( u ^ , x ) ∥ 2 2 L D a t a ( θ ; T d a t a ) = 1 ∣ T d a t a ∣ ∑ x ∈ T d a t a ∥ u ^ ( x ) − u ( x ) ∥ 2 2 \begin{aligned} \mathcal{L}_{PDE}\left(\boldsymbol{\theta} ; \mathcal{T}_{f}\right) &=\frac{1}{\left|\mathcal{T}_{f}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{f}}\left\|f\left(\mathbf{x} ; \frac{\partial \hat{u}}{\partial x_{1}}, \ldots, \frac{\partial \hat{u}}{\partial x_{d}} ; \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{d}} \right)\right\|_{2}^{2} \\ \mathcal{L}_{IC}\left(\boldsymbol{\theta}; \mathcal{T}_{i}\right) &=\frac{1}{\left|\mathcal{T}_{i}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{i}}\|\hat{u}(\mathbf{x})-u(\mathbf{x})\|_{2}^{2} \\ \mathcal{L}_{BC}\left(\boldsymbol{\theta}; \mathcal{T}_{b}\right) &=\frac{1}{\left|\mathcal{T}_{b}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{b}}\|\mathcal{B}(\hat{u}, \mathbf{x})\|_{2}^{2}\\ \mathcal{L}_{Data}\left(\boldsymbol{\theta}; \mathcal{T}_{data}\right) &=\frac{1}{\left|\mathcal{T}_{data}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{data}}\|\hat{u}(\mathbf{x})-u(\mathbf{x})\|_{2}^{2} \end{aligned} LPDE(θ;Tf)LIC(θ;Ti)LBC(θ;Tb)LData(θ;Tdata)=Tf1xTff(x;x1u^,,xdu^;x1x12u^,,x1xd2u^)22=Ti1xTiu^(x)u(x)22=Tb1xTbB(u^,x)22=Tdata1xTdatau^(x)u(x)22
    w f w_{f} wf w i w_{i} wi w b w_{b} wb w d w_{d} wd是权重。 T f \mathcal{T}_{f} Tf T i \mathcal{T}_{i} Ti T b \mathcal{T}_{b} Tb T d a t a \mathcal{T}_{data} Tdata表示来自PDE,初值、边值以及真值的residual points。这里的 T f ⊂ Ω \mathcal{T}_{f} \subset \Omega TfΩ是一组预定义的点来衡量神经网络输出 u ^ \hat{u} u^与PDE的匹配程度。
  • 最后,利用梯度优化算法最小化损失函数,直到找到满足预测精度的网络参数 KaTeX parse error: Undefined control sequence: \theat at position 1: \̲t̲h̲e̲a̲t̲^{*}

值得注意的是,对于逆问题,即方程中的某些参数未知。若只知道PDE方程及边界条件,PDE参数未知,该逆问题为非定问题,所以必须要知道其他信息,如部分观测点 u u u 的值。在这种情况下,PINN做法可将方程中的参数作为未知变量,加到训练器中进行优化,损失函数包括Data loss。

3.求解问题定义——正、逆问题

不可压缩流体可以由如下NS方程求解:
u t + λ 1 ( u u x + v u y ) = − p x + λ 2 ( u x x + u y y ) v t + λ 1 ( u v x + v v y ) = − p y + λ 2 ( v x x + v y y ) \begin{aligned} &u_t+\lambda_1\left(u u_x+v u_y\right)=-p_x+\lambda_2\left(u_{x x}+u_{y y}\right) \\ &v_t+\lambda_1\left(u v_x+v v_y\right)=-p_y+\lambda_2\left(v_{x x}+v_{y y}\right) \end{aligned} ut+λ1(uux+vuy)=px+λ2(uxx+uyy)vt+λ1(uvx+vvy)=py+λ2(vxx+vyy)
正问题

  • 参数 λ 1 = 1 \lambda_{1}=1 λ1=1 λ 2 = 0.01 \lambda_{2}=0.01 λ2=0.01为已知参数,该问题为已知边界条件和微分方程,求解 u,v,p 。
    逆问题
  • 参数 λ 1 , λ 2 \lambda_{1},\lambda_{2} λ1,λ2为未知参数,该问题为已知边界条件和微分方程,,但方程中参数未知,求解 u,v,p 以及方程参数。

考虑如图2所示长方形区域内,求解不可压缩流场,特别地,流体方程的解同时满足divergence-free functions,可以表述为:
u x + v y = 0 u_x+v_y=0 ux+vy=0
网络,输出应该为三维( u , v , p u,v,p u,v,p ),但在求解过程,可引入latent function, ψ ( x , y , t ) \psi(x,y,t) ψ(x,y,t) ,满足,
u = ψ y , v = − ψ x u=\psi_y, \quad v=-\psi_x u=ψy,v=ψx
网络输出,则可表示为二维( ψ , p \psi,p ψ,p)。

在这里插入图片描述

图2:圆柱绕流问题

在这里插入图片描述

图3:二维空间内流场

特别地,为了展示效果,这里我们选择10s下的流场对比预测效果。

请添加图片描述

图4:10s下的u,v

请添加图片描述

图5:10s下的p

4.结果展示

4.1 正问题实验结果

实验结果如图6-8所示,通过训练,PINN能实现u,v,p的准确预测
请添加图片描述

图6:预测u及误差图

请添加图片描述

图7:预测v及误差图


请添加图片描述

图8:预测p及误差图
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

深度学习求解微分方程系列五:PINN求解Navier-Stokes方程正逆问题 的相关文章

随机推荐

  • 【嵌入式环境下linux内核及驱动学习笔记-(10-内核内存管理)】

    目录 1 linux内核管理内存1 1 页1 2 区1 2 1 了解x86系统的内核地址映射区 xff1a 1 2 2 了解32位ARM系统的内核地址映射区 xff1a 2 内存存取2 1 kmalloc2 1 1 kfree2 1 2 k
  • 力扣刷题常用的c++库函数

    文章目录 1 xff0c max和min1 max函数2 xff0c min函数 2 xff0c sort函数sort 函数和lambda表达式 3 xff0c reverse 函数1 reverse函数可以反转一个字符串2 反转字符数组3
  • STM32学习(4)串口实验

    串口设置的一般步骤可以总结为如下几个步骤 xff1a 串口时钟使能 xff0c GPIO 时钟使能串口复位GPIO 端口模式设置串口参数初始化开启中断并且初始化 NVIC xff08 如果需要开启中断才需要这个步骤 xff09 使能串口编写
  • 【Docker】 入门与实战学习(Docker图形化工具和Docker Compose)

    文章目录 前言Docker图形化工具1 查看portainer镜像2 portainer镜像下载3 启动dockerui容器4 浏览器访问5 单机版Docker xff0c 直接选择Local xff0c 点击连接6 使用即可 Docker
  • 第三天_DOM

    第三天 Web APIs 学习目标 xff1a 能够使用removeChild 方法删除节点 能够完成动态生成表格案例 能够使用传统方式和监听方式给元素注册事件 能够说出事件流执行的三个阶段 能够在事件处理函数中获取事件对象 能够使用事件对
  • MySQL知识点整理汇总

    文章目录 前言一 数据库与SQL1 数据库与数据库管理系统2 关系数据库3 MySQL语句的种类4 MySQL语句的基本书写规则 二 MySQL语句的两大顺序1 MySQL 语句的书写顺序2 MySQL 语句的执行顺序 三 表的创建 删除与
  • 麦克科马克

    这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题 xff0c 有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中 居左 居右SmartyP
  • ROS-创建工作空间与功能包

    这里写目录标题 一 工作空间的组成与结构二 创建工作空间三 创建功能包四 设置环境变量五 功能包的package xml文件和CMakeLists txt文件 一 工作空间的组成与结构 工作空间的组成 xff1a src用于存放功能包源码
  • 「NeurIPS 2020」基于局部子图的图元学习

    点击蓝字 xff0c 设为星标 NeurIPS 2020 的接收论文 Graph Meta Learning via Local Subgraphs xff0c G META 是第一个使用局部子图来进行元学习的模型 Graph Meta L
  • Keras:Input()函数

    目录 1 Keras Input 函数 2 函数定义 xff1a 3 参数解释 4 例子 1 Keras Input 函数 作用 xff1a 初始化深度学习网络输入层的tensor 返回值 xff1a 一个tensor 2 函数定义 xff
  • JDBC入门笔记

    目录 1 xff0c JDBC概述 1 1 JDBC概念 2 xff0c JDBC快速入门 Java操作数据库的流程 2 1 编写代码步骤 3 JDBC API详解 3 1 DriverManager 3 2 Connection 3 2
  • 对抗样本入门详解

    文章目录 对抗样本基本原理对抗样本的发生对抗样本防御难在哪里对抗训练隐藏梯度defensive distillation 对抗样本的生成对抗样本生成方法介绍利用GAN生成对抗样本利用FGSM生成对抗样本代码复现 xff08 基于mnist
  • white/black-box attack(黑盒白盒攻击基础)

    基本概念 攻击方法分类标准 xff1a 假正性攻击 false positive 与伪负性攻击 false negative 假正性攻击 xff1a 原本是错误的但被被攻击模型识别为正例的攻击 eg 一张人类不可识别的图像 xff0c 被D
  • KL散度公式详解

    目录 文章目录 Jensen 39 s inequality讲解KL散度 xff08 又名relative entropy xff09 mutual information Jensen s inequality f x
  • 元学习算法MAML论文详解

    论文信息 题目 xff1a Model Agnostic Meta Learning for Fast Adaptation of Deep Networks 作者 xff1a Chelsea Finn 伯克利大学 xff0c Pieter
  • PINN内嵌物理知识神经网络入门及文献总结

    喜欢可点赞关注 xff0c 并收藏 xff0c 您的支持就是我的写作的动力 文章目录 一 PINN介绍二 物理信息驱动深度学习动手编程教程三 物理信息驱动深度学习方法几点讨论四 相关论文1 定义问题 建立工程架构2 网络结构选择3 不确定性
  • 极限学习机(Extreme Learning Machine,ELM)详解

    ELM ELM的提出目的是为了解决人工神经网络训练时耗费的时间和高成本 对此 xff0c 2004年由南洋理工大学的黄广斌提出了ELM学习理论 机器或者生物学习可以不需要调整隐层节点 xff1a 给定任何连续目标函数或者可分类目标 xff0
  • PINN深度学习求解微分方程系列一:求解框架

    下面我将介绍内嵌物理知识神经网络 xff08 PINN xff09 求解微分方程 首先介绍PINN基本方法 xff0c 并基于Pytorch框架实现求解一维Poisson方程 内嵌物理知识神经网络 xff08 PINN xff09 入门及相
  • PINN深度学习求解微分方程系列三:求解burger方程逆问题

    下面我将介绍内嵌物理知识神经网络 xff08 PINN xff09 求解微分方程 首先介绍PINN基本方法 xff0c 并基于Pytorch的PINN求解框架实现求解含时间项的一维burger方程逆问题 内嵌物理知识神经网络 xff08 P
  • 深度学习求解微分方程系列五:PINN求解Navier-Stokes方程正逆问题

    下面我将介绍内嵌物理知识神经网络 xff08 PINN xff09 求解微分方程 首先介绍PINN基本方法 xff0c 并基于Pytorch的PINN求解框架实现求解含时间项的二维Navier Stokes方程 内嵌物理知识神经网络 xff