如何根据物体位置旋转图像?

2024-01-20

首先,对帖子的长度表示抱歉。

我正在开展一个根据叶子图像对植物进行分类的项目。为了减少数据的方差,我需要旋转图像,以便茎在图像底部水平对齐(270 度)。

到目前为止我在哪里...

到目前为止,我所做的是创建一个阈值图像,然后从那里找到轮廓并在对象周围绘制一个椭圆(在许多情况下,它无法涉及整个对象,因此茎被遗漏......),之后,我创建 4 个区域(带有椭圆的边缘)并尝试计算最小值区域,这是由于假设在任何一点都必须找到茎,因此它将是人口较少的区域(主要是因为它将被 0 包围),这显然不能像我希望的那样工作。

之后,我以两种不同的方式计算旋转角度,第一种方式涉及atan2函数,这只需要我想要移动的点(人口最少区域的质心)以及在哪里x=image width / 2 and y = height。这种方法在某些情况下有效,但在大多数情况下,我没有得到所需的角度,有时需要负角度,但它会产生正角度,最终使茎位于顶部。在其他一些情况下,它只是以一种可怕的方式失败。

我的第二种方法是尝试根据 3 个点计算角度:图像中心、人口最少区域的质心和 270° 点。然后使用arccos函数,并将其结果转换为度数。

这两种方法对我来说都失败了。

问题

  • 您认为这是一个正确的方法还是我只是让事情变得比我应该做的更复杂?
  • 我怎样才能找到叶子的茎(这不是可选的,它必须是茎)?因为我的想法不太行得通......
  • 如何以稳健的方式确定角度?因为第二个问题同样的原因......

这是一些示例和我得到的结果(二进制掩码)。矩形表示我正在比较的区域,穿过椭圆的红线是椭圆的长轴,粉红色圆圈是最小区域内的质心,红色圆圈表示 270° 参考点(对于角度) ,白点代表图像的中心。

我当前的解决方案

    def brightness_distortion(I, mu, sigma):
        return np.sum(I*mu/sigma**2, axis=-1) / np.sum((mu/sigma)**2, axis=-1)
    
    
    def chromacity_distortion(I, mu, sigma):
        alpha = brightness_distortion(I, mu, sigma)[...,None]
        return np.sqrt(np.sum(((I - alpha * mu)/sigma)**2, axis=-1))
    
    def bwareafilt ( image ):
        image = image.astype(np.uint8)
        nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
        sizes = stats[:, -1]
    
        max_label = 1
        max_size = sizes[1]
        for i in range(2, nb_components):
            if sizes[i] > max_size:
                max_label = i
                max_size = sizes[i]
    
        img2 = np.zeros(output.shape)
        img2[output == max_label] = 255
    
        return img2
    
    def get_thresholded_rotated(im_path):
        
        #read image
        img = cv2.imread(im_path)
        
        img = cv2.resize(img, (600, 800), interpolation = Image.BILINEAR)
        
        sat = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)[:,:,1]
        val = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)[:,:,2]
        sat = cv2.medianBlur(sat, 11)
        val = cv2.medianBlur(val, 11)
        
        #create threshold
        thresh_S = cv2.adaptiveThreshold(sat , 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 401, 10);
        thresh_V = cv2.adaptiveThreshold(val , 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 401, 10);
        
        #mean, std
        mean_S, stdev_S = cv2.meanStdDev(img, mask = 255 - thresh_S)
        mean_S = mean_S.ravel().flatten()
        stdev_S = stdev_S.ravel()
        
        #chromacity
        chrom_S = chromacity_distortion(img, mean_S, stdev_S)
        chrom255_S = cv2.normalize(chrom_S, chrom_S, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)[:,:,None]
        
        mean_V, stdev_V = cv2.meanStdDev(img, mask = 255 - thresh_V)
        mean_V = mean_V.ravel().flatten()
        stdev_V = stdev_V.ravel()
        chrom_V = chromacity_distortion(img, mean_V, stdev_V)
        chrom255_V = cv2.normalize(chrom_V, chrom_V, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)[:,:,None]
        
        #create different thresholds
        thresh2_S = cv2.adaptiveThreshold(chrom255_S , 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 401, 10);
        thresh2_V = cv2.adaptiveThreshold(chrom255_V , 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 401, 10);
            
    
        #thresholded image
        thresh = cv2.bitwise_and(thresh2_S, cv2.bitwise_not(thresh2_V))
        
        #find countours and keep max
        contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        contours = contours[0] if len(contours) == 2 else contours[1]
        big_contour = max(contours, key=cv2.contourArea)
            
        # fit ellipse to leaf contours
        ellipse = cv2.fitEllipse(big_contour)
        (xc,yc), (d1,d2), angle = ellipse
        
        print('thresh shape: ', thresh.shape)
        #print(xc,yc,d1,d2,angle)
        
        rmajor = max(d1,d2)/2
        
        rminor = min(d1,d2)/2
        
        origi_angle = angle
        
        if angle > 90:
            angle = angle - 90
        else:
            angle = angle + 90
            
        #calc major axis line
        xtop = xc + math.cos(math.radians(angle))*rmajor
        ytop = yc + math.sin(math.radians(angle))*rmajor
        xbot = xc + math.cos(math.radians(angle+180))*rmajor
        ybot = yc + math.sin(math.radians(angle+180))*rmajor
        
        #calc minor axis line
        xtop_m = xc + math.cos(math.radians(origi_angle))*rminor
        ytop_m = yc + math.sin(math.radians(origi_angle))*rminor
        xbot_m = xc + math.cos(math.radians(origi_angle+180))*rminor
        ybot_m = yc + math.sin(math.radians(origi_angle+180))*rminor
        
        #determine which region is up and which is down
        if max(xtop, xbot) == xtop :
            x_tij = xtop
            y_tij = ytop
            
            x_b_tij = xbot
            y_b_tij = ybot
        else:
            x_tij = xbot
            y_tij = ybot
            
            x_b_tij = xtop
            y_b_tij = ytop
            
        
        if max(xtop_m, xbot_m) == xtop_m :
            x_tij_m = xtop_m
            y_tij_m = ytop_m
            
            x_b_tij_m = xbot_m
            y_b_tij_m = ybot_m
        else:
            x_tij_m = xbot_m
            y_tij_m = ybot_m
            
            x_b_tij_m = xtop_m
            y_b_tij_m = ytop_m
            
            
        print('-----')
        print(x_tij, y_tij)
        

        rect_size = 100
        
        """
        calculate regions of edges of major axis of ellipse
        this is done by creating a squared region of rect_size x rect_size, being the edge the center of the square
        """
        x_min_tij = int(0 if x_tij - rect_size < 0 else x_tij - rect_size)
        x_max_tij = int(thresh.shape[1]-1 if x_tij + rect_size > thresh.shape[1] else x_tij + rect_size)
        
        y_min_tij = int(0 if y_tij - rect_size < 0 else y_tij - rect_size)
        y_max_tij = int(thresh.shape[0] - 1 if y_tij + rect_size > thresh.shape[0] else y_tij + rect_size)
      
        
        x_b_min_tij = int(0 if x_b_tij - rect_size < 0 else x_b_tij - rect_size)
        x_b_max_tij = int(thresh.shape[1] - 1 if x_b_tij + rect_size > thresh.shape[1] else x_b_tij + rect_size)
        
        y_b_min_tij = int(0 if y_b_tij - rect_size < 0 else y_b_tij - rect_size)
        y_b_max_tij = int(thresh.shape[0] - 1 if y_b_tij + rect_size > thresh.shape[0] else y_b_tij + rect_size)
        
    
        sum_red_region =   np.sum(thresh[y_min_tij:y_max_tij, x_min_tij:x_max_tij])
    
        sum_yellow_region =   np.sum(thresh[y_b_min_tij:y_b_max_tij, x_b_min_tij:x_b_max_tij])
        
        
        """
        calculate regions of edges of minor axis of ellipse
        this is done by creating a squared region of rect_size x rect_size, being the edge the center of the square
        """
        x_min_tij_m = int(0 if x_tij_m - rect_size < 0 else x_tij_m - rect_size)
        x_max_tij_m = int(thresh.shape[1]-1 if x_tij_m + rect_size > thresh.shape[1] else x_tij_m + rect_size)
        
        y_min_tij_m = int(0 if y_tij_m - rect_size < 0 else y_tij_m - rect_size)
        y_max_tij_m = int(thresh.shape[0] - 1 if y_tij_m + rect_size > thresh.shape[0] else y_tij_m + rect_size)
      
        
        x_b_min_tij_m = int(0 if x_b_tij_m - rect_size < 0 else x_b_tij_m - rect_size)
        x_b_max_tij_m = int(thresh.shape[1] - 1 if x_b_tij_m + rect_size > thresh.shape[1] else x_b_tij_m + rect_size)
        
        y_b_min_tij_m = int(0 if y_b_tij_m - rect_size < 0 else y_b_tij_m - rect_size)
        y_b_max_tij_m = int(thresh.shape[0] - 1 if y_b_tij_m + rect_size > thresh.shape[0] else y_b_tij_m + rect_size)
        
        #value of the regions, the names of the variables are related to the color of the rectangles drawn at the end of the function
        sum_red_region_m =   np.sum(thresh[y_min_tij_m:y_max_tij_m, x_min_tij_m:x_max_tij_m])
    
        sum_yellow_region_m =   np.sum(thresh[y_b_min_tij_m:y_b_max_tij_m, x_b_min_tij_m:x_b_max_tij_m])
        
     
        #print(sum_red_region, sum_yellow_region, sum_red_region_m, sum_yellow_region_m)
        
        
        min_arg = np.argmin(np.array([sum_red_region, sum_yellow_region, sum_red_region_m, sum_yellow_region_m]))
        
        print('min: ', min_arg)
           
        
        if min_arg == 1: #sum_yellow_region < sum_red_region :
            
            
            left_quartile = x_b_tij < thresh.shape[0] /2 
            upper_quartile = y_b_tij < thresh.shape[1] /2
    
            center_x = x_b_min_tij + ((x_b_max_tij - x_b_min_tij) / 2)
            center_y = y_b_min_tij + (y_b_max_tij - y_b_min_tij / 2)
            
    
            center_x = x_b_min_tij + np.argmax(thresh[y_b_min_tij:y_b_max_tij, x_b_min_tij:x_b_max_tij].mean(axis=0))
            center_y = y_b_min_tij + np.argmax(thresh[y_b_min_tij:y_b_max_tij, x_b_min_tij:x_b_max_tij].mean(axis=1))
    
        elif min_arg == 0:
            
            left_quartile = x_tij < thresh.shape[0] /2 
            upper_quartile = y_tij < thresh.shape[1] /2
    
    
            center_x = x_min_tij + ((x_b_max_tij - x_b_min_tij) / 2)
            center_y = y_min_tij + ((y_b_max_tij - y_b_min_tij) / 2)
    
            
            center_x = x_min_tij + np.argmax(thresh[y_min_tij:y_max_tij, x_min_tij:x_max_tij].mean(axis=0))
            center_y = y_min_tij + np.argmax(thresh[y_min_tij:y_max_tij, x_min_tij:x_max_tij].mean(axis=1))
            
        elif min_arg == 3:
            
            
            left_quartile = x_b_tij_m < thresh.shape[0] /2 
            upper_quartile = y_b_tij_m < thresh.shape[1] /2
    
            center_x = x_b_min_tij_m + ((x_b_max_tij_m - x_b_min_tij_m) / 2)
            center_y = y_b_min_tij_m + (y_b_max_tij_m - y_b_min_tij_m / 2)
            
    
            center_x = x_b_min_tij_m + np.argmax(thresh[y_b_min_tij_m:y_b_max_tij_m, x_b_min_tij_m:x_b_max_tij_m].mean(axis=0))
            center_y = y_b_min_tij_m + np.argmax(thresh[y_b_min_tij_m:y_b_max_tij_m, x_b_min_tij_m:x_b_max_tij_m].mean(axis=1))
    
        else:
            
            left_quartile = x_tij_m < thresh.shape[0] /2 
            upper_quartile = y_tij_m < thresh.shape[1] /2
    
    
            center_x = x_min_tij_m + ((x_b_max_tij_m - x_b_min_tij_m) / 2)
            center_y = y_min_tij_m + ((y_b_max_tij_m - y_b_min_tij_m) / 2)
            
            center_x = x_min_tij_m + np.argmax(thresh[y_min_tij_m:y_max_tij_m, x_min_tij_m:x_max_tij_m].mean(axis=0))
            center_y = y_min_tij_m + np.argmax(thresh[y_min_tij_m:y_max_tij_m, x_min_tij_m:x_max_tij_m].mean(axis=1))
            
        # draw ellipse on copy of input
        result = img.copy() 
        cv2.ellipse(result, ellipse, (0,0,255), 1)

        cv2.line(result, (int(xtop),int(ytop)), (int(xbot),int(ybot)), (255, 0, 0), 1)
        cv2.circle(result, (int(xc),int(yc)), 10, (255, 255, 255), -1)
    
        cv2.circle(result, (int(center_x),int(center_y)), 10, (255, 0, 255), 5)
    
        cv2.circle(result, (int(thresh.shape[1] / 2),int(thresh.shape[0] - 1)), 10, (255, 0, 0), 5)
    
        cv2.rectangle(result,(x_min_tij,y_min_tij),(x_max_tij,y_max_tij),(255,0,0),3)
        cv2.rectangle(result,(x_b_min_tij,y_b_min_tij),(x_b_max_tij,y_b_max_tij),(255,255,0),3)
        
        cv2.rectangle(result,(x_min_tij_m,y_min_tij_m),(x_max_tij_m,y_max_tij_m),(255,0,0),3)
        cv2.rectangle(result,(x_b_min_tij_m,y_b_min_tij_m),(x_b_max_tij_m,y_b_max_tij_m),(255,255,0),3)
        
       
        plt.imshow(result)
        plt.figure()
        #rotate the image    
        rot_img = Image.fromarray(thresh)
            
        #180
        bot_point_x = int(thresh.shape[1] / 2)
        bot_point_y = int(thresh.shape[0] - 1)
        
        #poi
        poi_x = int(center_x)
        poi_y = int(center_y)
        
        #image_center
        im_center_x = int(thresh.shape[1] / 2)
        im_center_y = int(thresh.shape[0] - 1) / 2
        
        #a - adalt, b - abaix, c - dreta
        #ba = a - b
        #bc = c - a(b en realitat) 
        
        ba = np.array([im_center_x, im_center_y]) - np.array([bot_point_x, bot_point_y])
        bc = np.array([poi_x, poi_y]) - np.array([im_center_x, im_center_y])
        
        #angle 3 punts    
        cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
        cos_angle = np.arccos(cosine_angle)
        
        cos_angle = np.degrees(cos_angle)
        
        print('cos angle: ', cos_angle)
        
        print('print: ', abs(poi_x- bot_point_x))
        
        m = (int(thresh.shape[1] / 2)-int(center_x) / int(thresh.shape[0] - 1)-int(center_y))
        
        ttan = math.tan(m)
        
        theta = math.atan(ttan)
            
        print('theta: ', theta) 
        
        result = Image.fromarray(result)
        
        result = result.rotate(cos_angle)
        
        plt.imshow(result)
        plt.figure()
    
        #rot_img = rot_img.rotate(origi_angle)
    
        rot_img = rot_img.rotate(cos_angle)
    
        return rot_img
    
    
    rot_img = get_thresholded_rotated(im_path)
    
    plt.imshow(rot_img)

提前致谢- - 编辑 - -

I leave here some raw images as requested. sample

sample https://i.stack.imgur.com/OyVV4.jpg


双边对称 https://en.wikipedia.org/wiki/Symmetry_in_biology

旋转图像。找到最大的轮廓。使用矩,找到该轮廓的中心。将图像分割为左右部分(注意:应用cv2.blur(img, 5,5))产生更好的结果):

翻转右侧。叠加左右部分:

使用 cv2.absDiff() 测量左和(翻转)右之间的差异。由于叶子具有两侧对称性,因此当叶子的茎(或刺)垂直时,差异最小。

注意:将有两个最小值;当阀杆向上时一次,当阀杆向下时一次......

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

如何根据物体位置旋转图像? 的相关文章

随机推荐