详解,N沟道MOS管和P沟道MOS管

2023-05-16

出处:P沟道mos管作为开关的条件(GS >GS(TH))

1、P沟道mos管作为开关,栅源的阀值为-0.4V,当栅源的电压差为-0.4V就会使DS导通,如果S为2.8V,G为1.8V,那么GS=-1V,mos管导通,D为2.8V

如果S为2.8V,G为2.8V,VGSw

那么mos管不导通,D为0V,

所以,如果2.8V连接到S,要mos管导通为系统供电,系统连接到D,利用G控制。

那么和G相连的GPIO高电平要2.8-0.4=2.4V以上,才能使mos管关断,低电平使mos管导通。

如果控制G的GPIO的电压区域为1.8V,那么GPIO高电平的时候为1.8V,GS为1.8-2.8=-1V,mos管导通,不能够关断。

GPIO为低电平的时候,假如0.1V,那么GS为0.1-2.8=-2.7V,mos管导通。这种情况下GPIO就不能够控制mos管的导通和关闭。

2、P沟道的源极S接输入,漏极D导通输出,N沟道相反
说白了给箭头方向相反的电流就是导通,方向相同就是截止。
 

 

出处:详解,N沟道MOS管和P沟道MOS管

先讲讲MOS/CMOS集成电路

MOS集成电路特点:

制造工艺比较简单、成品率较高、功耗低、组成的逻辑电路比较简单,集成度高、抗干扰能力强,特别适合于大规模集成电路。

MOS集成电路包括:

NMOS管组成的NMOS电路、PMOS管组成的PMOS电路及由NMOS和PMOS两种管子组成的互补MOS电路,即CMOS电路。

PMOS门电路与NMOS电路的原理完全相同,只是电源极性相反而已。

数字电路中MOS集成电路所使用的MOS管均为增强型管子,负载常用MOS管作为有源负载,这样不仅节省了硅片面积,而且简化了工艺利于大规模集成。常用的符号如

图1所示。

N沟MOS晶体管

金属-氧化物-半导体(Metal-Oxide-SemIConductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS集成电路。

由p型衬底和两个高浓度n扩散区构成的MOS管叫作n沟道MOS管,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。

NMOS集成电路是N沟道MOS电路,NMOS集成电路的输入阻抗很高,基本上不需要吸收电流,因此,CMOS与NMOS集成电路连接时不必考虑电流的负载问题。NMOS集成电路大多采用单组正电源供电,并且以5V为多。CMOS集成电路只要选用与NMOS集成电路相同的电源,就可与NMOS集成电路直接连接。不过,从NMOS到CMOS直接连接时,由于NMOS输出的高电平低于CMOS集成电路的输入高电平,因而需要使用一个(电位)上拉电阻R,R的取值一般选用2~100KΩ。

N沟道增强型MOS管的结构

在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。

然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。

在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。

它的栅极与其它电极间是绝缘的。

图(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。

N沟道增强型MOS管的工作原理

(1)vGS对iD及沟道的控制作用

① vGS=0 的情况

从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。

② vGS>0 的情况

若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。

排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。

(2)导电沟道的形成:

当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。

开始形成沟道时的栅——源极电压称为开启电压,用VT表示。

上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。

vDS对iD的影响

如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。

漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。N沟道增强型MOS管的特性曲线、电流方程及参数(1)特性曲线和电流方程

1)输出特性曲线N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。2)转移特性曲线转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线。3)iD与vGS的近似关系与结型场效应管相类似。在饱和区内,iD与vGS的近似关系式为

式中IDO是vGS=2VT时的漏极电流iD。(2)参数MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP ,而用开启电压VT表征管子的特性。N沟道耗尽型MOS管的基本结构

(1)结构:N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。(2)区别:耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT时才出现导电沟道。(3)原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏——源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS0,VP(4)电流方程:

在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同,即:各种场效应管特性比较

P沟MOS晶体管金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类,P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。PMOS集成电路是一种适合在低速、低频领域内应用的器件。PMOS集成电路采用-24V电压供电。如图5所示的CMOS-PMOS接口电路采用两种电源供电。采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。

MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。各种场效应管特性比较

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

详解,N沟道MOS管和P沟道MOS管 的相关文章

随机推荐

  • ROS与Python入门教程-构建Catkin包

    ROS与Python入门教程 构建Catkin包 说明 本部分教程将演示如何使用catkin create pkg命令来创建一个新的catkin程序包以及创建之后都能做些什么 将剖析catkin create pkg命令生成的每个文件并详细
  • Gazebo添加模型库,解决打开后无模型的问题

    链接 xff1a http pan baidu com s 1pKaeg0F 密码 xff1a cmxc xff08 来自rosclub cn xff09 或是下载https bitbucket org osrf gazebo models
  • SpringBoot简单增删改查

    SpringBoot简单增删改查crud 学习Spring Boot 逐渐使用Spring Boot开始对spring mvc项目进行提升 Spring Boot相较于spring mvc的代码亮得到了优化 代码更加精简 需要进行的配置更加
  • Cisco 18系列AP在u-boot下tftp启动

    18系列AP在u boot下不能直接启动tar文件 xff0c 需要将tar文件解压得到part bin文件然后才能启动 在u boot下使用bootipq tftp启动镜像 RNAQ C7 bootipq tftp Specified B
  • OpenStack之keystone(T版)

    这里写目录标题 一 概述二 主要功能三 相关概念四 认证流程五 创建虚拟机的过程六 部署一 创建数据库实例和用户二 安装keystone Apache一 配置keystone二 初始化认证服务数据库三 初始化fernet密钥存储库四 配置b
  • OpenStack之Nova(T版)

    目录 一 概述二 Nova系统架构一 API二 Scheduler一 选择计算节点二 调度器类型三 过滤器 三 compute四 conductor五 PlacementAPl六 cell架构 三 部署一 Placement一 创建数据库二
  • 基于FreeRTOS消息缓冲区,实现STM32H7双核之间通信的原理

    FreeRTOS V10 3 1版本已发布 xff0c 官方网站也更新了 xff08 大家可以去看看 xff09 今天给大家分享的是 xff1a 使用FreeRTOS消息缓冲区 xff0c 实现简单的非对称多处理 xff08 AMP xff
  • keil mdk中文乱码,两种解决方法,字体不再难看

    方法一 xff1a 修改成Encode in UTF 8 without signature 我嘞个去 xff01 被字符编码整晕了 xff0c unicode xff0c ANSI xff0c UTF 8 xff0c GB2312 新版m
  • 迪文屏幕T5L平台学习笔记三:定时器使用

    上篇博客介绍了第一个C51程序Demo xff0c 在文本上显示一个 xff08 中英文混合 xff09 字符串 xff0c 这篇博客介绍下定时器2的使用 xff08 定时器0和1类似 xff09 一 先看定时器2的寄存器 在其他章节 xf
  • 使用闲置主机共享资源赚钱教程,收益不知道多少,不知道够不够电费的

    下载网心云的镜像ISO文件 xff0c 使用Rufus将镜像烧到一个U盘中 注意 此操作会清空U盘 xff0c 做完镜像后用U盘启动系统进入安装模式 安装完开机激活就可以了 瞧瞧我的收益 xff0c 1TB硬盘4核2G的工业主机 xff0c
  • 迪文屏幕T5L平台学习笔记七:RS485测试

    由于串口通信距离近 xff0c 且容易受到干扰 xff0c 最近改为RS485通信方案 xff0c 迪文屏幕DMG10600K070 03WTC正好也支持RS485通信 xff0c 把调试过程记录下 1 首先看下数据手册 xff1a 串口5
  • 烧录flash_烧录固件完成后,配置JFLASH让程序自动运行

    问题描述 xff1a 当使用IAR调试Cortex M0 43 产品 xff0c 在IAR MDK调试环境下烧录以后可以正常运行 xff0c 但是如果使用Segger的JFLASH直接烧录固件 bin或者 hex格式二进制文件 后程序并没有
  • 电力网络安全区域概念及划分

    笔者的专栏有很多人询问电力网络安全区的内容 xff0c 加上笔者多年来也一直看得很混乱 xff0c 这次多方收集信息 xff0c 加上自己的理解 xff0c 写成此文 内容可能更符合电网网络结构 xff0c 如有疏漏欢迎到电力知识图谱网站
  • 一文了解DTU、FTU、TTU、RTU的区别

    电力自动化有一堆 某TU xff08 不敢写X 怕被认为新设备 xff09 的设备 xff0c 搞得不做自动化的同学们很晕 xff0c 这里为大家收集下这几者的定义和区别 想要了解更加详细的内容 xff0c 可以点击电力知识图谱网站 xff
  • PIC单片机的配置字总结

    平台为 xff1a MPLAB V8 92 xff0c 这个ID有两个编译选项 xff1a DEBUG和RELEASE xff0c 那么可以根据系统预定宏来自动根据选择模式 xff0c 配置配置字 一 PIC18F系列配置字编写 MUC P
  • USB 2.0 A型、B型、Mini和Micro接口 type-c 定义及封装

    免责声明 xff1a 所有资料均来自互联网 xff0c 如有错误之处 xff0c 本人概不负责 出处 xff1a http blog 163 com wilicedon lee blog static 8158848320101174142
  • 对于嵌入式初学者建议读的书

    刚加入了几个嵌入式群 xff0c 群里提问最多的是怎么能够快速入门 xff1f 对于这个问题 xff0c 一千人个人可能有一千个答案 我也在嵌入式行业里混了几年 xff0c 虽然说技术很水 xff0c 经 验不多 xff0c 但是比起没有入
  • matlab学习笔记二:plot画图怎么设置线条类型和颜色

    出处 xff1a https jingyan baidu com article 48b558e338aaa37f38c09a80 html matlab的绘图功能很强大 xff0c 因此它在科学实验和社会调研中被广泛应用 我们在 绘制图形
  • XModem协议

    出处 xff1a XModem协议 XModem协议介绍 xff1a XModem是一种在串口通信中广泛使用的异步文件传输协议 xff0c 分为XModem和1k XModem协议两种 xff0c 前者使用128字节的数据块 xff0c 后
  • 详解,N沟道MOS管和P沟道MOS管

    出处 xff1a P沟道mos管作为开关的条件 xff08 GS gt GS xff08 TH xff09 xff09 1 P沟道mos管作为开关 xff0c 栅源的阀值为 0 4V xff0c 当栅源的电压差为 0 4V就会使DS导通 x