NV21 图像旋转处理 ( 后置摄像头顺时针旋转 90 度 | 前置摄像头顺时针旋转 90 度 )

2023-05-16

1 . NV21 格式图像数据的排列 : 16 1616 个 Y 灰度数据在前 , 然后 4 44 组 ( 8 88 个 ) VU 色彩值 , 饱和度 , 数据交替存放 ;

2 . NV21 格式的图像的 YUV 值顺时针旋转 90 度后的 YUV 矩阵为 :

3 . 灰度值 Y 数据读取顺序 :

① 外层循环 : 逐行遍历, 从第一行遍历到最后一行, 从 0 到 mWidth - 1 ;

② 内存循环 : 遍历每一行时, 从底部遍历到顶部, 从 mHeight - 1 到 0 ;

for (int i = 0; i < mWidth; i++) {
    // 第 i 行, 从每一列的最后一个像素 ( 索引 mHeight - 1 ) 遍历到第一个像素 ( 索引 0 )
    for (int j = mHeight - 1; j >= 0; j--) {
        // 将读取到的 Y 灰度值存储到 mNv21DataBuffer 缓冲区中
        mNv21DataBuffer[positionIndex++] = data[mWidth * j + i];
    }
}

 

4 . 饱和度 色彩值 UV 数据读取顺序 :


① 数据高度个数 : Y 数据的高度与图像高度相等 , UV 数据高度相当于 Y 数据高度的一半 ;

② UV 数据排列 : V 色彩值在前, U 饱和度在后, UV 数据交替排列 , 一行 mWidth 中, 排布了 mWidth / 2 组 UV 数据 ;

③ UV 数据组有 mWidth / 2 行, mHeight / 2 列, 因此遍历时, 有如下规则 :

按照行遍历 : 遍历 mWidth / 2 次
按照列遍历 : 遍历 mHeight / 2 次
④ 外层遍历 : 每隔 2 行, 遍历一次, 遍历 mWidth / 2 次 ; 遍历行从 0 到 mWidth / 2 - 1 ;

⑤ 内层遍历 : UV 数据也需要倒着读 , 从 mHeight / 2 - 1 遍历到 0 ;

for (int i = 0; i < mWidth / 2; i ++) {//遍历不同行
    for (int j = UVByteHeight - 1; j >= 0; j--) {//相同行内遍历不同列顺序赋值给目标数组
        // 读取数据时, 要从 YByteCount 之后的数据开始遍历
        // 使用 mWidth 和 UVByteHeight 定位要遍历的位置
        // 拷贝 V 色彩值数据
        mNv21DataBuffer[positionIndex++] = data[YByteCount + mWidth / 2 * 2 * j + i];
        // 拷贝 U 饱和度数据
        mNv21DataBuffer[positionIndex++] = data[YByteCount + mWidth / 2 * 2 * j + i + 1];
    }
}

 

二、 前置摄像头顺时针旋转 90 度

1 . NV21 格式图像数据的排列 : 16 1616 个 Y 灰度数据在前 , 然后 4 44 组 ( 8 88 个 ) VU 色彩值 , 饱和度 , 数据交替存放 ;
 

2 . NV21 格式的图像的 YUV 值逆时针旋转 90 度后的 YUV 矩阵为 :

 

 

3 . 灰度值 Y 数据读取顺序 :

① 外层循环 : 逐行遍历, 从最后一行遍历到第一行, 从 mWidth - 1 到 0 ;

② 内存循环 : 遍历第 i 行时, 从顶部遍历到底部, 从 0 到 mHeight - 1

 

for (int i = mWidth - 1; i >= 0; i--) {
    // 第 i 行, 从每一列的最后一个像素 ( 索引 mHeight - 1 ) 遍历到第一个像素 ( 索引 0 )
    for (int j = 0; j < mHeight; j++) {
        // 将读取到的 Y 灰度值存储到 mNv21DataBuffer 缓冲区中
        mNv21DataBuffer[positionIndex++] = data[mWidth * j + i];
    }
}

 

4 . 饱和度 色彩值 UV 数据读取顺序 :


① 数据高度个数 : Y 数据的高度与图像高度相等 , UV 数据高度相当于 Y 数据高度的一半 ;

② UV 数据排列 : V 色彩值在前, U 饱和度在后, UV 数据交替排列 , 一行 mWidth 中, 排布了 mWidth / 2 组 UV 数据 ;

③ UV 数据组有 mWidth / 2 行, mHeight / 2 列, 因此遍历时, 有如下规则 :

按照行遍历 : 遍历 mWidth / 2 次
按照列遍历 : 遍历 mHeight / 2 次
④ 外层遍历 : 每隔 2 行, 遍历一次, 遍历 mWidth / 2 次 ; 遍历行从mWidth / 2 - 1 到 0 ;

⑤ 内层遍历 : UV 数据也需要倒着读 , 从 0 遍历到 mHeight / 2 - 1 ;

for (int i = mWidth / 2 - 1; i >= 0 ; i --) {
    for (int j = 0; j < UVByteHeight; j++) {
        // 读取数据时, 要从 YByteCount 之后的数据开始遍历
        // 使用 mWidth 和 UVByteHeight 定位要遍历的位置
        // 拷贝 V 色彩值数据
        mNv21DataBuffer[positionIndex++] = data[YByteCount + mWidth / 2 * 2 * j + i];
        // 拷贝 U 饱和度数据
        mNv21DataBuffer[positionIndex++] = data[YByteCount + mWidth / 2 * 2 * j + i + 1];
    }
}

 

 

 

 

 

 

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

NV21 图像旋转处理 ( 后置摄像头顺时针旋转 90 度 | 前置摄像头顺时针旋转 90 度 ) 的相关文章

  • Android 相机预览方向和拍照方向

    我们知道手机 Camera 的图像数据都是来自于摄像头硬件的图像传感器 xff08 Image Sensor xff09 xff0c 这个 Sensor 被固定到手机之后是有一个默认的取景方向的 xff0c 这个方向如下图所示 xff0c
  • Python无参装饰器

    一 什么是装饰器 定义一个函数 xff0c 该函数可为其他函数添加额外的功能 二 何时用装饰器 需要在不修改被装饰对象源代码及其调用方式时 xff0c 为被装饰对象添加额外的功能 三 如何写一个装饰器 现在我们有如下一个函数help xff
  • typedef的用法

    typedef中声明的类型在变量名的位置出现 什么意思呢 xff0c 我们回头来看 我们是怎么声明int类型变量的 xff1f int Typename 像上面这样 xff0c 对不对 xff1f 那么用typedef之后呢 xff1f 把
  • Activity启动流程(一)

    Launcher进程请求AMSAMS发送创建应用进程请求Zygote进程接受请求并孵化应用进程应用进程启动ActivityThread 一 Launcher进程请求AMS 上面我们提到根Activity的启动流程其实就是桌面上点击一个应用图
  • Activity启动流程(二)

    应用进程绑定到AMSAMS发送启动Activity的请求ActivityThread的Handler处理启动Activity的请求 一 应用进程绑定到AMS 1 时序图 2 详细过程 在前面一篇我们知道当Zygote进程孵化出应用进程后会执
  • AudioRecord

    数字音频 数字音频通常分为三步 xff1a 采样 量化 编码 采样 xff1a 就是将获取的信号给数字化 xff0c 其中有个概念就是采样频率 xff0c 而人耳能听到的频率范围只有20Hz 20kHz xff0c 所以一般设置的都是44
  • GCC编译C/C++程序(一步完成)

    使用 GCC 编译器编译 C 或者 C 43 43 程序 xff0c 也必须要经历这 4 个过程 但考虑在实际使用中 xff0c 用户可能并不关心程序的执行结果 xff0c 只想快速得到最终的可执行程序 xff0c 因此 gcc 和 g 4
  • GCC -E选项:对源程序做预处理操作

    存储在 demo c 文件中 include lt stdio h gt int main puts 34 hello world 34 return 0 通过为 gcc 指令添加 E 选项 xff0c 即可控制 GCC 编译器仅对源代码做
  • GCC -S选项:编译非汇编文件

    root 64 bogon demo cat demo c include lt stdio h gt int main puts 34 Hello World 34 return 0 root 64 bogon demo gcc E de
  • GCC -c选项:生成目标文件

    root 64 bogon demo ls demo c root 64 bogon demo cat demo c include lt stdio h gt int main puts 34 Hello World 34 return
  • GCC -l选项:手动添加链接库

    标准库的大部分函数通常放在文件 libc a 中 xff08 文件名后缀 a代表 achieve xff0c 译为 获取 xff09 xff0c 或者放在用于共享的动态链接文件 libc so 中 xff08 文件名后缀 so代表 shar
  • GCC 编译使用动态链接库和静态链接库

    1 库的分类 根据链接时期的不同 xff0c 库又有静态库和动态库之分 静态库是在链接阶段被链接的 xff08 好像是废话 xff0c 但事实就是这样 xff09 xff0c 所以生成的可执行文件就不受库的影响了 xff0c 即使库被删除了
  • python爬虫——爬取数据导入excel表

    1 导入第三方库 requests库 re html xlwt span class token keyword from span bs4 span class token keyword import span BeautifulSou
  • Makefile call函数

    引用变量的格式为 变量名 xff0c 函数调用的格式如下 xff1a lt function gt lt arguments gt 或者是 lt function gt lt arguments gt 其中 xff0c function 是
  • Glide生命周期绑定

    Glide class和RequestManagerRetriever class xff0c 主要用来获得RequestManager with返回一个RequestManager public static RequestManager
  • Glide缓存机制

    Glide中采用计数的方式统计资源的引用 xff0c 在每个EngineResource内部都设置一个引用计数acquired xff0c 在加载资源时引用 43 43 xff0c 释放资源时引用 xff1a class EngineRes
  • UML类图

    类图 xff08 Class Diagrams xff09 xff1a 用户根据用例图抽象成类 xff0c 描述类的内部结构和类与类之间的关系 xff0c 是一种静态结构图 在UML类图中 xff0c 常见的有以下几种关系 泛化 xff08
  • android源码github

    https github com aosp mirror platform frameworks base
  • jar 包转 java

    jd gui 内 File gt Save All Sources 直接保存到本地
  • DataBinding源码解析

    DataBinding是Google发布的支持库 xff0c 它可以实现UI组件及数据源的双向绑定 使用DataBinding可以轻松实现MVVM模式 xff0c 当数据发生变化时会体现在View界面上 xff0c 反过来界面内容变化也会同

随机推荐

  • LiveData源码分析

    首先还是以一个示例开始 xff1a MutableLiveData lt String gt liveString 61 new MutableLiveData lt gt liveString observe mOwner new Obs
  • ViewModel源码分析

    首先 xff0c 还是先看一个例子 xff1a public class MyViewModel extends ViewModel private MutableLiveData lt List lt User gt gt users p
  • RxJava2源码分析——Map操作符

    本文章用的RxJava和RxAndroid版本如下 xff1a implementation 39 io reactivex rxjava2 rxjava 2 2 6 39 implementation 39 io reactivex rx
  • 交叉编译pytorch的aarch64版本

    提示 xff1a 文章写完后 xff0c 目录可以自动生成 xff0c 如何生成可参考右边的帮助文档 文章目录 前言一 基础环境二 编译流程1 下载源码并配置TOOLCHAIN FILE内容2 预编译出protoc库和sleef库3 ana
  • 使用CSplitterWnd类静态分割的窗口的隐藏[转]

    标题略长 之前百度了很多 xff0c 也看过了很多程序 xff0c 那个时候稍微有点小青涩 xff0c 所以那些东西根本是看不懂什么意思 现在回过头来看 xff0c 其实还是很容易就实现的 当然 xff0c 话题很初级 xff0c 不是面向
  • Rxjava2源码-FlatMap操作符

    先来看一下使用demo Observable create new ObservableOnSubscribe lt String gt 64 Override public void subscribe ObservableEmitter
  • 代理设计模式

    代理模式的结构与实现 代理模式的结构比较简单 xff0c 主要是通过定义一个继承抽象主题的代理来包含真实主题 xff0c 从而实现对真实主题的访问 xff0c 下面来分析其基本结构和实现方法 1 模式的结构 代理模式的主要角色如下 抽象主题
  • 适配器模式

    模式的结构与实现 类适配器模式可采用多重继承方式实现 xff0c 如 C 43 43 可定义一个适配器类来同时继承当前系统的业务接口和现有组件库中已经存在的组件接口 xff1b Java 不支持多继承 xff0c 但可以定义一个适配器类来实
  • 装饰器模式

    装饰器模式的结构与实现 通常情况下 xff0c 扩展一个类的功能会使用继承方式来实现 但继承具有静态特征 xff0c 耦合度高 xff0c 并且随着扩展功能的增多 xff0c 子类会很膨胀 如果使用组合关系来创建一个包装对象 xff08 即
  • 享元设计模式

    享元模式的结构与实现 享元模式的定义提出了两个要求 xff0c 细粒度和共享对象 因为要求细粒度 xff0c 所以不可避免地会使对象数量多且性质相近 xff0c 此时我们就将这些对象的信息分为两个部分 xff1a 内部状态和外部状态 内部状
  • 组合设计模式

    组合模式的结构与实现 组合模式的结构不是很复杂 xff0c 下面对它的结构和实现进行分析 1 模式的结构 组合模式包含以下主要角色 抽象构件 xff08 Component xff09 角色 xff1a 它的主要作用是为树叶构件和树枝构件声
  • 模板方法模式

    模式的结构与实现 模板方法模式需要注意抽象类与具体子类之间的协作 它用到了虚函数的多态性技术以及 不用调用我 xff0c 让我来调用你 的反向控制技术 现在来介绍它们的基本结构 1 模式的结构 模板方法模式包含以下主要角色 1 xff09
  • 策略设计模式

    策略模式的结构与实现 策略模式是准备一组算法 xff0c 并将这组算法封装到一系列的策略类里面 xff0c 作为一个抽象策略类的子类 策略模式的重心不是如何实现算法 xff0c 而是如何组织这些算法 xff0c 从而让程序结构更加灵活 xf
  • 命令设计模式

    命令模式的结构与实现 可以将系统中的相关操作抽象成命令 xff0c 使调用者与实现者相关分离 xff0c 其结构如下 1 模式的结构 命令模式包含以下主要角色 抽象命令类 xff08 Command xff09 角色 xff1a 声明执行命
  • 状态设计模式

    状态模式的结构与实现 状态模式把受环境改变的对象行为包装在不同的状态对象里 xff0c 其意图是让一个对象在其内部状态改变的时候 xff0c 其行为也随之改变 现在我们来分析其基本结构和实现方法 1 模式的结构 状态模式包含以下主要角色 环
  • linux开启关闭端口(iptables 无法使用情况下)

    一 查看端口开启状态 查询已开放的端口 netstat anp root 64 localhost etc firewall cmd query port 61 8080 tcp 提示 yes xff0c 表示开启 xff1b no表示未开
  • 中介者模式

    模式的结构与实现 中介者模式实现的关键是找出 中介者 xff0c 下面对它的结构和实现进行分析 1 模式的结构 中介者模式包含以下主要角色 抽象中介者 xff08 Mediator xff09 角色 xff1a 它是中介者的接口 xff0c
  • YUV解析

    一般的视频采集芯片输出的码流一般都是 YUV 格式数据流 xff0c 后续视频处理也是对 YUV 数据流进行编码和解析 所以 xff0c 了解 YUV 数据流对做视频领域的人而言 xff0c 至关重要 在介绍 YUV 格式之前 xff0c
  • Android Camera旋转角度

    首先理解一下 info orientation 官方解释 官方定义 xff1a orientation 表示相机图像的方向 它的值是相机图像顺时针旋转到设备自然方向一致时的角度 例如假设设备是竖屏的 后置相机传感器是横屏安装的 当你面向屏幕
  • NV21 图像旋转处理 ( 后置摄像头顺时针旋转 90 度 | 前置摄像头顺时针旋转 90 度 )

    1 NV21 格式图像数据的排列 16 1616 个 Y 灰度数据在前 然后 4 44 组 8 88 个 VU 色彩值 饱和度 数据交替存放 2 NV21 格式的图像的 YUV 值顺时针旋转 90 度后的 YUV 矩阵为 3 灰度值 Y 数