以操作系统的角度述说线程与进程

2023-05-16

什么是线程

什么是线程?线程与进程与有什么关系?这是一个非常抽象的问题,也是一个特别广的话题,涉及到非常多的知识。我不能确保能把它讲的话,也不能确保讲的内容全部都正确。即使这样,我也希望尽可能地把他讲通俗一点,讲的明白一点,因为这是个一直困扰我很久的,扑朔迷离的知识领域,希望通过我的理解揭开它一层一层神秘的面纱。

 

任务调度

线程是什么?要理解这个概念,须要先了解一下操作系统的一些相关概念。大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(别觉得并发有多高深,它的实现很复杂,但它的概念很简单,就是一句话:多个任务同时执行)。多任务运行过程的示意图如下:

图 1:操作系统中的任务调度

 

 

进程

我们都知道计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序侧是具有某种功能的程序,程序是运行于操作系统之上的。

进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。进程是一种抽象的概念,从来没有统一的标准定义。进程一般由程序、数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时所需要的数据和工作区;程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯一标志。

进程具有的特征:

动态性:进程是程序的一次执行过程,是临时的,有生命期的,是动态产生,动态消亡的;

并发性:任何进程都可以同其他进程一起并发执行;

独立性:进程是系统进行资源分配和调度的一个独立单位;

结构性:进程由程序、数据和进程控制块三部分组成。

 

线程

在早期的操作系统中并没有线程的概念,进程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。任务调度采用的是时间片轮转的抢占式调度方式,而进程是任务调度的最小单位,每个进程有各自独立的一块内存,使得各个进程之间内存地址相互隔离。

后来,随着计算机的发展,对CPU的要求越来越高,进程之间的切换开销较大,已经无法满足越来越复杂的程序的要求了。于是就发明了线程,线程是程序执行中一个单一的顺序控制流程,是程序执行流的最小单元,是处理器调度和分派的基本单位。一个进程可以有一个或多个线程,各个线程之间共享程序的内存空间(也就是所在进程的内存空间)。一个标准的线程由线程ID、当前指令指针(PC)、寄存器和堆栈组成。而进程由内存空间(代码、数据、进程空间、打开的文件)和一个或多个线程组成。

 

 

进程与线程的区别

前面讲了进程与线程,但可能你还觉得迷糊,感觉他们很类似。的确,进程与线程有着千丝万缕的关系,下面就让我们一起来理一理:

1.线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位;

2.一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;

3.进程之间相互独立,但同一进程下的各个线程之间共享程序的内存空间(包括代码段、数据集、堆等)及一些进程级的资源(如打开文件和信号),某进程内的线程在其它进程不可见;

4.调度和切换:线程上下文切换比进程上下文切换要快得多。

 

线程与进程关系的示意图:

图 2:进程与线程的资源共享关系

 

图 3:单线程与多线程的关系

 

总之,线程和进程都是一种抽象的概念,线程是一种比进程更小的抽象,线程和进程都可用于实现并发。

 

在早期的操作系统中并没有线程的概念,进程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。它相当于一个进程里只有一个线程,进程本身就是线程。所以线程有时被称为轻量级进程(Lightweight Process,LWP)。

图 4:早期的操作系统只有进程,没有线程

后来,随着计算机的发展,对多个任务之间上下文切换的效率要求越来越高,就抽象出一个更小的概念——线程,一般一个进程会有多个(也可是一个)线程。

图 5:线程的出现,使得一个进程可以有多个线程

 

多线程与多核

上面提到的时间片轮转的调度方式说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。很多操作系统的书都说“同一时间点只有一个任务在执行”。那有人可能就要问双核处理器呢?难道两个核不是同时运行吗?

其实“同一时间点只有一个任务在执行”这句话是不准确的,至少它是不全面的。那多核处理器的情况下,线程是怎样执行呢?这就需要了解内核线程。

多核(心)处理器是指在一个处理器上集成多个运算核心从而提高计算能力,也就是有多个真正并行计算的处理核心,每一个处理核心对应一个内核线程。内核线程(Kernel Thread, KLT)就是直接由操作系统内核支持的线程,这种线程由内核来完成线程切换,内核通过操作调度器对线程进行调度,并负责将线程的任务映射到各个处理器上。一般一个处理核心对应一个内核线程,比如单核处理器对应一个内核线程,双核处理器对应两个内核线程,四核处理器对应四个内核线程。

现在的电脑一般是双核四线程、四核八线程,是采用超线程技术将一个物理处理核心模拟成两个逻辑处理核心,对应两个内核线程,所以在操作系统中看到的CPU数量是实际物理CPU数量的两倍,如你的电脑是双核四线程,打开“任务管理器\性能”可以看到4个CPU的监视器,四核八线程可以看到8个CPU的监视器。

 

图 6:双核四线程在Windows8下查看的结果

超线程技术就是利用特殊的硬件指令,把一个物理芯片模拟成两个逻辑处理核心,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。这种超线程技术(如双核四线程)由处理器硬件的决定,同时也需要操作系统的支持才能在计算机中表现出来。

 

程序一般不会直接去使用内核线程,而是去使用内核线程的一种高级接口——轻量级进程(Light Weight Process,LWP),轻量级进程就是我们通常意义上所讲的线程(我们在这称它为用户线程),由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。用户线程与内核线程的对应关系有三种模型:一对一模型、多对一模型、多对多模型,在这以4个内核线程、3个用户线程为例对三种模型进行说明。

一对一模型

对于一对一模型来说,一个用户线程就唯一地对应一个内核线程(反过来不一定成立,一个内核线程不一定有对应的用户线程)。这样,如果CPU没有采用超线程技术(如四核四线程的计算机),一个用户线程就唯一地映射到一个物理CPU的线程,线程之间的并发是真正的并发。一对一模型使用户线程具有与内核线程一样的优点,一个线程因某种原因阻塞时其他线程的执行不受影响;此处,一对一模型也可以让多线程程序在多处理器的系统上有更好的表现。

但一对一模型也有两个缺点:1.许多操作系统限制了内核线程的数量,因此一对一模型会使用户线程的数量受到限制;2.许多操作系统内核线程调度时,上下文切换的开销较大,导致用户线程的执行效率下降。

 

图 7:一对一模型

 

 

多对一模型

多对一模型将多个用户线程映射到一个内核线程上,线程之间的切换由用户态的代码来进行,因此相对一对一模型,多对一模型的线程切换速度要快许多;此外,多对一模型对用户线程的数量几乎无限制。但多对一模型也有两个缺点:1.如果其中一个用户线程阻塞,那么其它所有线程都将无法执行,因为此时内核线程也随之阻塞了;2.在多处理器系统上,处理器数量的增加对多对一模型的线程性能不会有明显的增加,因为所有的用户线程都映射到一个处理器上了。

图 8:多对一模型

 

多对多模型

多对多模型结合了一对一模型和多对一模型的优点,将多个用户线程映射到多个内核线程上。多对多模型的优点有:1.一个用户线程的阻塞不会导致所有线程的阻塞,因为此时还有别的内核线程被调度来执行;2.多对多模型对用户线程的数量没有限制;3.在多处理器的操作系统中,多对多模型的线程也能得到一定的性能提升,但提升的幅度不如一对一模型的高。

在现在流行的操作系统中,大都采用多对多的模型。

图 9:多对多模型

 

 

查看进程与线程

一个应用程序可能是多线程的,也可能是多进程的,如何查看呢?在Windows下我们只须打开任务管理器就能查看一个应用程序的进程和线程数。按“Ctrl+Alt+Del”或右键快捷工具栏打开任务管理器。

查看进程数和线程数:

图 10:查看线程数和进程数

在“进程”选项卡下,我们可以看到一个应用程序包含的线程数。如果一个应用程序有多个进程,我们能看到每一个进程,如在上图中,Google的chrome浏览器就有多个进程。同时,如果打开了一个应用程序的多个实例也会有多个进程,如上图中我打开了两个cmd窗口,就有两个cmd进程。如果看不到线程数这一列,可以在点击“查看\选择列”菜单,增加监听的列。

 

查看CPU和内存的使用率:

在性能选项卡中,我们可以查看CPU和内存的使用率,根据CPU使用记录的监视器的个数还能看出逻辑处理核心的个数,如我的双核四线程的计算机就有四个监视器。

图 11:查看CPU和内存的使用率

 

 

线程的生命周期

当线程的数量小于处理器的数量时,线程的并发是真正的并发,不同的线程运行在不同的处理器上。但当线程的数量大于处理器的数量时,线程的并发会受到一些阻碍,此时并不是真正的并发,因为此时至少有一个处理器会运行多个线程。

在单个处理器运行多个线程时,并发是一种模拟出来的状态。操作系统采用时间片轮转的方式轮流执行每一个线程。现在,几乎所有的现代操作系统采用的都是时间片轮转的抢占式调度方式,如我们熟悉的Unix、Linux、Windows及Mac OS X等流行的操作系统。

我们知道线程是程序执行的最小单位,也是任务执行的最小单位。在早期只有进程的操作系统中,进程有五种状态,创建、就绪、运行、阻塞(等待)、退出。早期的进程相当于现在的只有单个线程的进程,那么现在的多线程也有五种状态,现在的多线程的生命周期与早期进程的生命周期类似。

图 12:早期进程的生命周期

 

进程在运行过程有三种状态:就绪、运行、阻塞,创建和退出状态描述的是进程的创建过程和退出过程。

创建:进程正在创建,还不能运行。操作系统在创建进程时要进行的工作包括分配和建立进程控制块表项、建立资源表格并分配资源、加载程序并建立地址空间;

就绪:时间片已用完,此线程被强制暂停,等待下一个属于他的时间片到来;

运行:此线程正在执行,正在占用时间片;

阻塞:也叫等待状态,等待某一事件(如IO或另一个线程)执行完;

退出:进程已结束,所以也称结束状态,释放操作系统分配的资源。

图 13:线程的生命周期

 

创建:一个新的线程被创建,等待该线程被调用执行;

就绪:时间片已用完,此线程被强制暂停,等待下一个属于他的时间片到来;

运行:此线程正在执行,正在占用时间片;

阻塞:也叫等待状态,等待某一事件(如IO或另一个线程)执行完;

退出:一个线程完成任务或者其他终止条件发生,该线程终止进入退出状态,退出状态释放该线程所分配的资源。

 

 

原文:http://blog.csdn.net/luoweifu/article/details/46595285 

 

 

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

以操作系统的角度述说线程与进程 的相关文章

随机推荐

  • Mission Planner安卓安装包

    可以在安卓手机上安装并使用的安装包 下载地址 xff1a https download csdn net download xjhappyarrow 22864716 spm 61 1001 2014 3001 5503
  • Docker 相关配置文件路径

    配置文件参数 xff1a 1 优先解析在config file命令行参数 2 在root模式下 Docker Daemon 默认配置文件路径 etc docker daemon json 3 在rootless模式下 默认配置文件路径在 d
  • 1. 【gRPC系列学习】 gRPC起源、优缺点

    gRPC是一项进程间通信技术 xff0c 可以用来连接 调用 操作 调试分布式异构应用程序 xff0c 就像调用本地函数一样 gRPC主要采用同步的请求 响应进行通信 xff0c 但建立连接后 xff0c 它可以完全以异步模式进行操作 1
  • stlink灯一直闪

    灯闪说明stlink工作不正常 原因可能是 xff1a 1 stlink供电不足 试着用外部电源和stlink同时给板子供电 2 电脑的USB口硬件 xff08 USB口烧了 xff0c 但可能性比较少 xff09 或USB相关驱动有问题
  • stlink使用笔记

    1 stlink灯一直闪 2 当用外部电源 xff08 外部 就是不直接使用stlink为板子供电 xff09 为板子供电时 xff0c 如果要用stlink xff08 SWD模式 xff09 xff0c 那么不能只插SWCLK和SWDI
  • 先电OpenStack创建云主机报错500

    现象 xff1a 从报错中可定位到问题出在nova的conductor组件中 日志 xff1a 查看 var log nova nova conductor log 从日志中可以观察到是因为找不到cpu特性 解决方法 xff1a 进入 us
  • MAVROS + APM + pixhawk 填坑日记(一)

    64 TOC MAVROS 43 APM 43 pixhawk 填坑日记 一 树莓派和pixhawk通过usb串口连接 xff0c 想通过mavros读取飞控上关于GPS的位置信息 rostopic list可以看到mavros发布的话题消
  • ubuntu搭建APT源简单方法

    一 为什么需要搭建APT源 原因如下 xff1a 1 在公司内网离线情况下 xff0c ubuntu无法通过apt原生源进行下载 2 有些源国内无法正常访问 xff0c 需要翻墙 基于以上原因 xff0c 需要自建APT源 二 准备条件 需
  • 加速度计参数讲解

    测量范围 FS也称量程 xff0c 单位为g 地球重力 xff0c 是指加速度计能测量到的正反方向最大加速度的额定值范围 常见有 xff08 2g 4g 8g 16g up to 400g 灵敏度 分辨率Sensitivity Resolu
  • vim 编辑器---批量注释和批量取消注释/去除黄色阴影

    添加注释 ctrl 43 v 进入块选泽模式 上下键选中需要注释的行 按大写 I 进入插入模式 xff0c 输入注释符 按两次 ESC 退出 xff0c 即完成添加注释 取消注释 ctrl 43 v 进入块选泽模式 上下键选中需要注释的行
  • 作业—FreeRTOS入门

    FreeRTOS入门 零 需求软件 xff08 自行下载 xff09 一 任务要求二 FreeRTOS的使用1 原理2 多任务程序3 烧录代码4 结果 三 注意事项四 参考资料 零 需求软件 xff08 自行下载 xff09 1 keil5
  • Flask 案例

    创建news xff0c 根目录下创建settings文件 config py文件 xff0c 编写配置项 xff0c 配置项必须大写 class DeFaultConfig SECRET KEY 61 39 39 SQLALCHEMY D
  • 三 Gazebo学习总结之制作一个模型及导入网格

    Models从简单的形状到复杂的机器人都有 它指的是 lt model gt SDF标签 xff0c 从本质上来说是links joints collision objects visuals和plugins的集合 xff0c 生成一个模型
  • STM32F103V跑NuttX之一——下载nuttX及编译烧录

    下载nuttX及编译 1 NuttX官方链接2 NuttX及App工程下载3 编译NuttX中STM32F103V nsh测试例程4 在ubuntu下使用串口来烧录目标文件至STM32F103V4 1 ubuntu下stm32flash工具
  • Win10遍历句柄表+修改权限过Callback保护

    本帖转载于http www m5home com bbs thread 8847 1 1 html 本想发到看雪 xff0c 但自己太菜 xff0c 看雪 牛人 又太多 xff0c 想想还是发到紫水晶吧 感谢 TA 的 WIN64 教程带我
  • Pixhawk飞控源码目录结构及编译流程分析

    xff08 PS xff1a 这是第一次写博客 xff0c 以前也有记录一些经验总结心得什么的 xff0c 不过都是手写笔记或者记在word上 xff0c csdn看了好久 xff0c 总觉的只索取不付出心里有些过意不去 xff0c 以后尽
  • 无刷电机驱动解析

    1 概述 无霍尔的BLDC控制方案与有霍尔BLDC的基本原理相似 都是用所谓 六步换向法 根据转子当前的位置 按照一定的顺序给定子绕组通电使BLDC电机转动 所不同的是无霍尔BLDC不需要霍尔效应传感器 通过检测定子绕组的反电动势过零点来判
  • Ubuntu20.04用D435i运行VINS-Mono

    Ubuntu20 04用D435i运行VINS Mono 一 安装VINS Mono1 首先安装需要的ros包 xff0c 如果安装的是完整ros xff0c 应该是都安装过的2 安装ceres solver xff0c 进VINS Mon
  • 计算机核心期刊新排名(八大学报)

    八大学报 1 计算机学报 2 软件学报 3 计算机科学与技术学报 xff08 JCST xff09 4 计算机研究与发展 5 自动化学报 6 电子学报 7 通信学报 8 中国科学 被SCI检索的国外期刊 xff08 顶级会议 xff09 新
  • 以操作系统的角度述说线程与进程

    什么是线程 什么是线程 xff1f 线程与进程与有什么关系 xff1f 这是一个非常抽象的问题 xff0c 也是一个特别广的话题 xff0c 涉及到非常多的知识 我不能确保能把它讲的话 xff0c 也不能确保讲的内容全部都正确 即使这样 x