STM32 编码器模式详解

2023-05-16

0、编码器模式

stm32的定时器带的也有编码器模式。
所用的编码器是有ABZ三相,其中ab相是用来计数,z相输出零点信号。
AB相根据旋转的方向不同,输出的波形如下图所示:
在这里插入图片描述
从图上可以看出来,cw方向A相会超前B相90度左右,相反CCW方向,B相会超前A相90度左右。不过方向判断stm32自己是可以完成的。

一、编码器接口模式

选择编码器接口模式的方法是:如果计数器只在TI2的边沿计数,则置TIMx_SMCR寄存器中的SMS=001;如果只在TI1边沿计数,则置SMS=010;如果计数器同时在TI1和TI2边沿计数,则置SMS=011。
通过设置TIMx_CCER寄存器中的CC1P和CC2P位,可以选择TI1和TI2极性;如果需要,还可以对输入滤波器编程。
两个输入TI1和TI2被用来作为增量编码器的接口。参看表77,假定计数器已经启动(TIMx_CR1寄存器中的CEN=’1’),计数器由每次在TI1FP1或TI2FP2上的有效跳变驱动。TI1FP1和TI2FP2是TI1和TI2在通过输入滤波器和极性控制后的信号;如果没有滤波和变相,则TI1FP1=TI1,TI2FP2=TI2。根据两个输入信号的跳变顺序,产生了计数脉冲和方向信号。依据两个输入信号的跳变顺序,计数器向上或向下计数,同时硬件对TIMx_CR1寄存器的DIR位进行相应的设置。不管计数器是依靠TI1计数、依靠TI2计数或者同时依靠TI1和TI2计数。在任一输入端(TI1或者TI2)的跳变都会重新计算DIR位。
编码器接口模式基本上相当于使用了一个带有方向选择的外部时钟。这意味着计数器只在0到TIMx_ARR寄存器的自动装载值之间连续计数(根据方向,或是0到ARR计数,或是ARR到0计数)。所以在开始计数之前必须配置TIMx_ARR;同样,捕获器、比较器、预分频器、触发输出特性等仍工作如常。
在这个模式下,计数器依照增量编码器的速度和方向被自动的修改,因此计数器的内容始终指示着编码器的位置。计数方向与相连的传感器旋转的方向对应。下表列出了所有可能的组合,假设TI1和TI2不同时变换。
表1 计数方向和编码器的关系
在这里插入图片描述

一个外部的增量编码器可以直接与MCU连接而不需要外部接口逻辑。但是,一般会使用比较器将编码器的差动输出转换到数字信号,这大大增加了抗噪声干扰能力。编码器输出的第三个信号表示机械零点,可以把它连接到一个外部中断输入并触发一个计数器复位。
下图是一个计数器操作的实例,显示了计数信号的产生和方向控制。它还显示了当选择了双边沿时,输入抖动是如何被抑制的;抖动可能会在传感器的位置靠近一个转换点时产生。在这个例子中,我们假定配置如下:
● CC1S=’01’ (TIMx_CCMR1寄存器, IC1FP1映射到TI1)
● CC2S=’01’ (TIMx_CCMR2寄存器, IC2FP2映射到TI2)
● CC1P=’0’ (TIMx_CCER寄存器, IC1FP1不反相, IC1FP1=TI1)
● CC2P=’0’ (TIMx_CCER寄存器, IC2FP2不反相, IC2FP2=TI2)
● SMS=’011’ (TIMx_SMCR寄存器,所有的输入均在上升沿和下降沿有效).
● CEN=’1’ (TIMx_CR1寄存器,计数器使能)
图1 编码器模式下的计数器操作实例
在这里插入图片描述

二、对下面计数器方向和编码器关系表格的理解

在这里插入图片描述
我们可以对应图1来看
仅在TI1计数时 相对信号的电平其实就是TI2的电平(不考虑反向的情况)这样再看这张表就会比较容易理解了
在TI2为高电平的时候TI1为上升沿时脉冲计数减1,TI1位下降沿时脉冲计数加1
在TI2为低电平的时候TI1为上升沿时脉冲计数加1,TI1位下降沿时脉冲计数减1
后面可以同理类推。

三、固件库中的编码器接口函数

上面部分的内容是对手册中编码器模式的摘录。从中我们可以看出编码器模式的配置方法。STM32固件库中提供了编码器接口的配置函数(下面摘录了函数介绍和参数说明部分)



/**
  * @brief  Configures the TIMx Encoder Interface.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_EncoderMode: specifies the TIMx Encoder Mode.
  *   This parameter can be one of the following values:
  *     @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
  *     @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
  *     @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
  *                                on the level of the other input.
  * @param  TIM_IC1Polarity: specifies the IC1 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Falling: IC Falling edge.
  *     @arg TIM_ICPolarity_Rising: IC Rising edge.
  * @param  TIM_IC2Polarity: specifies the IC2 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Falling: IC Falling edge.
  *     @arg TIM_ICPolarity_Rising: IC Rising edge.
  * @retval None
  */
void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)

我们使用如下函数即可达到上面手册实例中通过寄存器配置的效果(假设使用的是TIM2定时器)

TIM_EncoderInterfaceConfig(TIM2,TIM_EncoderMode_TI12,TIM_ICPolarity_Rising,TIM_ICPolarity_Rising)

从上面的手册中我们也可知道使用编码器模式需要配置时基,也可以选择使用过滤器(需要配置输入捕获)因此我们可以推出编码器模式的编程流程

开始------------>
开启GPIO端口时钟和定时器时钟------------>
配置时基结构体------------>
配置编码器------------>
配置输入捕获结构体------------>
使能定时器------------>
结束

四、编码器可以使用的接口

一般的编码器有AB两相,需要接到定时器的两个通道上。对于STM32而言只有TIMx_CH1和TIMx_CH2支持编码器模式。这一点我们可以从定时器的时钟框图可以看出(因此编码器模式下定时器通道的选择上一定要注意)

在这里插入图片描述

五、使用stm32cubeMx配置的过程。

步骤

(1) 首先打开timer2的encoder模式:

在这里插入图片描述

(2) 下面才是重点,配置具体定时器的参数:

选择的encoderMode是 **TI1和TI2模式。这种模式下,AB两相的上升沿和下降沿都会计数,所以计数值是实际值的4倍,需要做分频。**也就是第一个参数,分频值设为3,实际上是3+1=4分频。

还有个地方需要解释一下,我刚开始的时候就是把这里的设置没搞清楚,看Polarity参数设置的是Rising Edge。这个参数的意思是在检测到上升沿的时候就触发encoder捕获AB相的值,而并不是这里设置的是上升沿就只检测AB相的上升沿,下降沿还是同样会计数的。
Input Filter滤波值是从1-15,看情况设定,是用来滤除一些杂波的。
在这里插入图片描述

(3) 生成代码

这样基本就配置好了,生成mdk工程。
然后就是添加应用代码了。
在初始化中添加打开定时器的encoder模式:

HAL_TIM_Encoder_Start(&htim2, TIM_CHANNEL_ALL);

然后定期调用下面这一句函数就可以获取到encoder编码器的计数值:

enc1 = (uint32_t)(__HAL_TIM_GET_COUNTER(&htim2));//获取定时器的值


六 常用函数

(1) 初始化的时候开启编码器计数

HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL);

(2) 在循环中调用 __HAL_TIM_IS_TIM_COUNTING_DOWN 可以获得当前电机的转向 0为正、1为负

DirectionA = __HAL_TIM_IS_TIM_COUNTING_DOWN(&htim3);
DirectionB = __HAL_TIM_IS_TIM_COUNTING_DOWN(&htim4);

(3)在循环中调用 __HAL_TIM_GET_COUNTER 获取计数器的计数值,即编码器的脉冲数

CaptureNumberA=__HAL_TIM_GET_COUNTER(&htim3);
CaptureNumberB=__HAL_TIM_GET_COUNTER(&htim4);

(4)调用 __HAL_TIM_SET_COUNTER 设置计数器的计数值,即编码器的脉冲数

__HAL_TIM_SET_COUNTER(&htimx,number);

(5)调用__HAL_TIM_SET_AUTORELOAD 设置编码器的最大计数值ARR

__HAL_TIM_SET_AUTORELOAD(&htimx,number)

(6) 关闭编码器计数

HAL_TIM_Encoder_Stop(&htim3, TIM_CHANNEL_ALL);

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

STM32 编码器模式详解 的相关文章

  • 浏览器的同源策略

    https developer mozilla org zh CN docs Web Security Same origin policy 这篇翻译不完整 请帮忙从英语翻译这篇文章 同源策略限制了从同一个源加载的文档或脚本如何与来自另一个
  • centos简单解决报错-bash 未找到命令

    centos报错 bash 未找到命令 在使用纯净镜像的时候 经常找不到一些额外的命令 想用但是不知道怎么安装 拿telnet 和netstat 举例 telnet yum provides telnet 这里只需要 yum y span
  • [问题已处理]-docker build出来的镜像没有更新成功

    导语 xff1a 记录一下docker build镜像的坑 如果修改代码文件的话 xff0c docker build 有时候会不替换文件 xff0c 而会使用cache xff0c 导致代码文件没有更新 第一次构建镜像 产生了cache
  • [问题已处理]在docker中使用nohup

    导语 xff1a docker运行容器是否能使用nohup 以下是测试在不同的情况下使用nohup 先启动一个容器 仅看进程的pid号参考 docker run it rm ubuntu 16 04 bash sleep 5 amp amp
  • k8s-集群搭建的三种方式和区别,kubeadm、minikube,二进制包

    k8s 集群搭建的三种方式 xff0c 目前主流的搭建k8s集群的方式有kubeadm minikube xff0c 二进制包 kubeadm 是一个工具 xff0c 用于快速搭建kubernetes集群 xff0c 目前应该是比较方便和推
  • 精确算法、启发式算法、元启发式算法及增长方式浅析

    组合优化问题是通过用数学方法的研究去寻找离散事件的最优编排 分组 次序或筛选等 xff0c 其变量是离散分布的 对于结构化的组合优化问题 xff0c 其解空间的规模能够得到控制 xff0c 对于这样的问题 xff0c 使用精确算法就可以求得
  • 重构一个快不可维护的项目

    历史原因 xff0c 接手了一个一直堆业务逻辑 xff0c 没有重构过的项目 xff0c 简单看了一下代码就感觉麻头皮 xff0c 满目都是一个方法里面大段的代码 xff0c 阅读起来极度困难 可以合并的类没有合并 xff0c 导致一个请求
  • 芯片端子的多路复用

    嵌入式软件的开发 xff0c 经常要和芯片打交道 xff0c 和个人电脑的通用平台的CPU使用X86或X64架构不同 xff0c 嵌入式电子产品使用的主控芯片是各种各样的 xff0c 从8051单片机 xff0c 到ARM Cortex M
  • 树莓派学习笔记——获取树莓派CPU温度

    0 前言 本文通过文件操作读取树莓派CPU温度 xff0c 在linux系统中任何设备的操作都被抽象成为文件读写 xff0c 通过读取 sys class thermal thermal zone0 temp文件中的内容便获得树莓派CPU的
  • DHT11温湿度传感器

    1 封装信息 2 DHT11通讯总介 微处理器与DHT 11之间的通讯和同步 xff0c 采用单总线数据格式 xff0c 一次通讯时间4ms左右 xff0c 数据分小数部分和整数部分 一次完整的数据传输为40bit xff0c 高位先出 数
  • does not support raise

    This plugin does not support propagateSizeHints This plugin does not support raise arm平台界面无法显示 xff0c 有如上日志 该系统上安装的是5 11
  • docker jvm 内存限制

    docker 容器提供了相关的内存限制 具体使用方式如 xff1a m 512m 完整例子 docker run rm m 512m e JAVA OPTS 61 Xmx512m tomcat 8 通过 m 进行限制 但是在实际应用重 xf
  • DES加密算法—实现(C语言)

    http www iteye com topic 478024 DES xff08 Data Encrypt Standard数据库加密标准 xff09 是迄今为止使用最广泛的加密体制 初学信息安全的新生 xff0c 一般都会被老师要求实现
  • 国家运输ITS通信协议(NTCIP)简介

    国家智能交通系统工程技术研究中心 张北海 中交国通智能交通系统技术有限公司 肖媛媛 1 NTCIP的发展历程 NTCIP National Transportation Communications for ITS Protocol 是美国
  • linux下使用hiredis异步API实现sub/pub消息订阅和发布的功能

    本文转载自链接 xff1a http blog csdn net chenzba article details 51224715 xfeff xfeff 最近使用redis的c接口 hiredis xff0c 使客户端与redis服务器通
  • 推荐ucos-II 3本参考书 经典

    在这里给大家推荐三本学习ucos的必看书籍 1 xff08 比较难买 xff09 嵌入式实时操作系统uc os II教程 西安电子科技大学出版 这本书对UCOS的源代码分析的非常清楚 比作者原著 在某种程度上要好 xff0c 这本书对关键的
  • Windbg查看调用堆栈(k*)

    https www 52pojie cn thread 664189 1 1 html 无论是分析程序崩溃原因 xff0c 还是解决程序hang问题 xff0c 我们最常查看的就是程序调用堆栈 学会windbg调用堆栈命令 xff0c 以及
  • POV写作手法

    POV xff08 Point of View xff09 xff0c 一种写作手法 xff0c 即 视点人物写作手法 xff0c 在叙述同一件事可以自由选取最丰厚的角度 xff0c 大大加强了叙述的灵活性 xff0c 在讲述故事的同时作者
  • Go语言学习资料整理

    整理网上找到的Golang语言学习资料 基础 基础教程 书籍在线版 Go 指南 A Tour of Go Go语言圣经 xff08 中文版 xff09 Effective Go中文版 Go Web编程 build web applicati
  • 更好的内存管理-jemalloc

    今年年初由于facebook而火起来的jemalloc广为人之 xff0c 但殊不知 xff0c 它在malloc界里面很早就出名了 Jemalloc的创始人Jason Evans也是在FreeBSD很有名的开发人员 此人就在2006年为提

随机推荐

  • Windows上安装Net-SNMP5.7

    本文简要记录了在Windows上安装 net snmp 5 7 1的步骤 xff0c 最新的源码包可上net snmp官方网站下载 安装net snmp 5 7 1之前需要先安装 VS2010Win32 OpenSSL v1 0 1fAct
  • Redis源码分析(二)--结构体分析(1)

    继上次的redis源码分析 一 之后 xff0c 本人开始订制着一份非常伟大的计划 啃完redis源代码 xff0c 也对他进行了切块划分 xff0c 鉴于本人目前对他的整个运行流畅还不特别清楚的情况下 xff0c 所以决定第一个要解决的就
  • Redis源码分析(三)---dict哈希结构

    昨天分析完adlist的Redis代码 xff0c 今天马上马不停蹄的继续学习Redis代码中的哈希部分的结构学习 xff0c 不过在这里他不叫什么hashMap xff0c 而是叫dict xff0c 而且是一种全新设计的一种哈希结构 x
  • 【原创】关于wince OS开发面试问题的总结系列之Bootloader

    参考资料 xff1a 1 Windows CE 工程事件完全解析 by xff1a 李大为 2 Windos CE 实用开发技术 by xff1a 张冬泉 等 3 Windows Embedded CE 6 0 Fundamentals 4
  • UML--类之间的五种关系

    UML中的关系 xff08 Relationships xff09 主要包括5种 xff1a 关联关系 聚合关系 依赖关系 泛化关系 实现关系 1 关联 xff08 Association xff09 关系 关联关系是一种结构化的关系 xf
  • stm32并行驱动LCD12864,最简洁代码让你的屏幕亮起来

    前言 这两天因为一个项目的需要 xff0c 所以又用到了LCD12864这个模块 好久都没用到这玩意了 xff0c 感觉这东西好像要被淘汰的样子 xff0c 没想到现在又要用到 xff0c 简直了 记得上次用还是大一参加机器人比赛的时候 x
  • GCC编译过程,了解编译原理

    说明 xff1a 这篇文件是在读 程序员的自我修养 链接 装载与库 的一点笔记 xff0c 权当时学习的记录 1 GCC编译过程分解 以HelloWorld程序为例 2 预编译 规则 xff1a 命令 xff1a gcc E XXX c o
  • 谨以此文献给正在面临选择的你

    我是2011届的考生 xff0c 当我从我们学校的的分数公布栏上看到自己的分数时 xff0c 我感觉我的世界都变成了灰色 xff0c 一切都暗淡无光 在那段时间里 xff0c 我思考了很多的问题 xff0c 诸如要不要去复读 去哪一所学校
  • Linux - Ubuntu里安装Python的包

    在Ubuntu中 xff0c apt install python xff0c 默认是安装python2 要安装python3 要使用apt install python3 安装后运行python python2 xff0c 调用的都是py
  • 第二章:STM32MxCube配置串口

    基于上一次将第一章 xff1a STM32MxCube 基本使用方法 本章直接讲叙述STM32配置串口2的 查看STM32F407电路图 xff1a 可得USART2接在PA2 PA3 下面新建STM32MxCube工程 xff0c 开始配
  • 浅述数字化与信息化

    数字化 和 信息化 是两个被用 滥 了的词 xff0c 但是搞 IT 的一定要真正理解这两个词 xff0c 才能在正确的场合使用在正确的地方 数字化 xff08 to digitize xff09 简单的说就是用计算机技术来代替一些传统手动
  • 飞书扫码登录网页

    二维码 SDK 接入文档 最后更新于 2022 06 14 概述 为了实现在网页内部完成授权登录的流程 xff0c 避免跳转到飞书登录页 xff0c 保证流畅的体验 xff0c 可以接入二维码 SDK 将飞书登录的二维码嵌入到网页中 当用户
  • make命令参数详解

    Make命令本身可带有四种参数 xff1a 标志 宏定义 描述文档名和目标文档名 其标准形式为 xff1a Make flags macro definitions targets Unix系统下标志位flags选项及其含义为 xff1a
  • c语言汉诺塔问题详解

    一 前言 汉诺塔 xff08 Tower of Hanoi xff09 xff0c 又称河内塔 xff0c 是一个源于印度古老传说的益智玩具 大梵天创造世界的时候做了三根金刚石柱子 xff0c 在一根柱子上从下往上按照大小顺序摞着64片黄金
  • 阿里云服务器的使用

    阿里云服务器的使用 外网ip 39 108 98 xxx xff08 linux xff09 ubuntu16 04 root root密码 putty ssh工具 xshell ssh scp 登录到阿里云服务器上 xff08 ubunt
  • 项目如何介绍

    谈谈XXX项目 分析 xff1a 考官通过看你的简历或者你的介绍来了解你所做的项目 xff0c 那么考官肯定想更详细的了解您的项目 xff0c 看是不是与你的简历写的项目经验一致 也就是考核你是否具有真实的项目经验 一般来说 xff0c 在
  • K8S的flannel组件容器网络分析

    kubernetes的网络通信可以分为一下几个部分 xff1a pod内部的容器间通信pod间通信pod与service之间网络通信kubernetes外部与service之间的网络通信 理论 xff1a 1 pod内部的容器间通信 kub
  • 数据结构(Data Structure)——1、栈(Stack)

    栈的介绍 栈 xff08 stack xff09 在计算机科学中是限定仅在表尾进行插入或删除操作的线形表 栈是一种数据结构 xff0c 是只能在某一端插入和删除的特殊线性表 它按照先进后出的原则存储数据 xff0c 先进入的数据被压入栈底
  • 进程间通信之消息队列

    首先说一下什么是消息队列 消息队列是进程间通信的一种 xff0c 它是由操作系统维护的以字节序列为基本单位的间接通信机制 xff0c 它提供了一个进程向另一个进程发送一个带类型的数据块的方法 我们知道用管道来实现进程间通信的机制是两个进程利
  • STM32 编码器模式详解

    0 编码器模式 stm32的定时器带的也有编码器模式 所用的编码器是有ABZ三相 xff0c 其中ab相是用来计数 xff0c z相输出零点信号 AB相根据旋转的方向不同 xff0c 输出的波形如下图所示 xff1a 从图上可以看出来 xf