扩展卡尔曼滤波EKF与多传感器融合

2023-05-16

Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍EKF,并介绍其在无人驾驶多传感器融合上的应用。

这里写图片描述

KF与EKF

本文假定读者已熟悉KF,若不熟悉请参考卡尔曼滤波简介。

KF与EKF的区别如下:

  1. 预测未来: x=Fx+u x=f(x,u) 代替;其余 F Fj代替。
  2. 修正当下:将状态映射到测量的 Hx h(x) 代替;其余 H Hj代替。

其中,非线性函数 f(x,u)h(x) 用非线性得到了更精准的状态预测值、映射后的测量值;线性变换 FjHj 通过线性变换使得变换后的 xz 仍满足高斯分布的假设。

FjHj 计算方式如下:

Fjb=f(x,u)x=h(x)x

这里写图片描述

为什么要用EKF

KF的假设之一就是高斯分布的 x 预测后仍服从高斯分布,高斯分布的x变换到测量空间后仍服从高斯分布。可是,假如 FH 是非线性变换,那么上述条件则不成立。

将非线性系统线性化

既然非线性系统不行,那么很自然的解决思路就是将非线性系统线性化。

对于一维系统,采用泰勒一阶展开即可得到:

f(x)f(μ)+f(μ)x(xμ)

对于多维系统,仍旧采用泰勒一阶展开即可得到:

T(x)f(a)+(xa)TDf(a)

其中, Df(a) 是Jacobian矩阵。

多传感器融合

lidar与radar

本文将以汽车跟踪为例,目标是知道汽车时刻的状态 x=(px,py,vx,vy) 。已知的传感器有lidar、radar。

  • lidar:笛卡尔坐标系。可检测到位置,没有速度信息。其测量值 z=(px,py)
  • radar:极坐标系。可检测到距离,角度,速度信息,但是精度较低。其测量值 z=(ρ,ϕ,ρ˙) ,图示如下。

这里写图片描述

传感器融合步骤

这里写图片描述

步骤图如上所示,包括:

  1. 收到第一个测量值,对状态 x 进行初始化。
  2. 预测未来
  3. 修正当下

初始化

初始化,指在收到第一个测量值后,对状态x进行初始化。初始化如下,同时加上对时间的更新。

对于radar来说,

pxpyvxvy=10000100[pxpy]

对于radar来说,

pxpyvxvy=ρcosϕρsinϕρ˙cosϕρ˙sinϕ

预测未来

预测主要涉及的公式是:

xP=Fx=FPFT+Q

需要求解的有三个变量: FPQ


F 表明了系统的状态如何改变,这里仅考虑线性系统,F易得:

Fx=10000100dt0100dt01pxpyvxvy


P 表明了系统状态的不确定性程度,用x的协方差表示,这里自己指定为:

P=1000010000100000001000


Q 表明了x=Fx未能刻画的其他外界干扰。本例子使用线性模型,因此加速度变成了干扰项。 x=Fx 中未衡量的额外项目 v 为:

v=axdt22aydt22axdtaydt=dt220dt00dt220dt[axay]=Ga

v 服从高斯分布N(0,Q)

Q=E[vvT]=E[GaaTGT]=GE[aaT]GT=G[σ2ax00σ2ay]GT=dt44σ2ax0dt32σ2ax00dt44σ2ay0dt32σ2aydt32σ2ax0dt2σ2ax00dt32σ2ay0dt2σ2ay

修正当下

lidar

lidar使用了KF。修正当下这里牵涉到的公式主要是:

ySKxP=zHx=HPHT+R=PHTS1=x+Ky=(IKH)P

需要求解的有两个变量: HR


H 表示了状态空间到测量空间的映射。

Hx=[10010000]pxpyvxvy


R 表示了测量值的不确定度,一般由传感器的厂家提供,这里lidar参考如下:

Rlaser=[0.0225000.0225]

radar

radar使用了EKF。修正当下这里牵涉到的公式主要是:

ySKxP=zf(x)=HjPHTj+R=PHTjS1=x+Ky=(IKHj)P

区别与上面lidar的主要有:

  1. 状态空间到测量空间的非线性映射 f(x)
  2. 非线性映射线性化后的Jacob矩阵
  3. radar的 Rradar

状态空间到测量空间的非线性映射 f(x) 如下

f(x)=ρϕρ˙=p2x+p2yarctanpypxpxvx+pyvyp2x+p2y


非线性映射线性化后的Jacob矩阵 Hj

Hj=f(x)x=ρpxϕpxρ˙pxρpyϕpyρ˙pyρvxϕvxρ˙vxρvyϕvyρ˙vy


R 表示了测量值的不确定度,一般由传感器的厂家提供,这里radar参考如下:

Rlaser=0.090000.00090000.09

传感器融合实例

多传感器融合的示例如下,需要注意的有:

  1. lidar和radar的预测部分是完全相同的
  2. lidar和radar的参数更新部分是不同的,不同的原因是不同传感器收到的测量值是不同的
  3. 当收到lidar或radar的测量值,依次执行预测、更新步骤
  4. 当同时收到lidar和radar的测量值,依次执行预测、更新1、更新2步骤

这里写图片描述

多传感器融合的效果如下图所示,红点和蓝点分别表示radar和lidar的测量位置,绿点代表了EKF经过多传感器融合后获取到的测量位置,取得了较低的RMSE。

这里写图片描述

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

扩展卡尔曼滤波EKF与多传感器融合 的相关文章

  • EKF之雅克比矩阵(一)

    扩展卡尔曼滤波 EKF EKF之雅克比矩阵 文章目录 扩展卡尔曼滤波 EKF 前言一 什么是线性化 xff1f 二 雅克比矩阵1 矩阵的几何含义2 非线性矩阵与基底的关系3 雅克比矩阵 三 工程中雅克比矩阵如何应用总结 前言 一般的卡尔曼滤
  • 惯性导航解决方案ADIS16448+tbus-tiny_ekf测评

    忽然感觉TBUS牛逼 xff0c 真的是深钻了一些算法 xff0c 真正解决了些问题 xff0c 单靠IMU实现定位都做出来了 xff0c 牛逼 最新的他们好像是用中心差分卡尔曼滤波了 xff0c 可以看到他们在状态估计上花了很大的力气 转
  • 任何的卡尔曼滤波器的研究都要紧紧围绕状态与方差的传播特性。 让我想起MSCKF是误差状态的EKF模型。

    任何的卡尔曼滤波器的研究都要紧紧围绕状态与方差的传播特性 让我想起MSCKF是误差状态的EKF模型 传播特性应该就是指预测方差或者递推方程 xff1f https blog csdn net sinat 16643223 article d
  • EKF_SLAM一般过程

    SLAM xff0c 同步定位与地图构建 xff0c 本文将介绍基于EKF的SLAM的整体过程 1 EKF SLAM Overview 当机器人处在个未知环境中时 xff0c 他最想知道的就是他在当前环境中的位置 环境不知道咋办 xff0c
  • 扩展卡尔曼滤波_无人车定位系列之:扩展卡尔曼滤波

    当系统状态方程不符合线性假设时 xff0c 采用卡尔曼滤波无法获得理想的最优估计 扩展卡尔曼滤波与卡尔曼滤波主要区别在于 xff1a 对状态方程的泰勒展开 快速回顾几个知识点 xff1a Gaussian Distribution of U
  • PX4 EKF中的多传感器融合方法

    文章目录 1 滤波方法及状态预测1 1 EKF 滤波方程1 2 KF 滤波方程1 3 PX4中的状态量及其预测1 3 1 状态量1 3 2 姿态四元数一步预测1 3 3 速度 位置一步预测1 3 4 协方差阵预测 2 磁三轴数据融合2 1
  • 推荐关于PX4 ECL EKF方程推导的两篇“宝藏“文章

    文章目录 一 PX4 的 ECL EKF 公式推导及代码解析 by 赵祯卿二 PX4 的 ECL EKF2 方程推导 by shuyong chen PX4的ECL EKF开源代码已经比较广泛地应用到很多无人机飞控项目中 该开源项目可以融合
  • EKF—SLAM推导

    转自 http blog csdn net qq 30159351 article details 53408740 这是SLAM最传统的基础 xff0c 是SLAM最原始的方法 xff0c 虽然现在使用较少 xff0c 但是还是有必要了解
  • (11)EKF - (1.3) EKF1调参参数

    系列文章目录 11 EKF 1 导航综述和调参 文章目录 系列文章目录 前言 3 1 AHRS EKF USE 3 2 EKF ABIAS PNOISE
  • 扩展卡尔曼滤波

    扩展卡尔曼滤波 xff08 Extended Kalman Filter xff0c EKF xff09 是标准卡尔曼滤波在非线性情形下的一种扩展形式 xff0c EKF算法是将非线性函数进行泰勒展开 xff0c 省略高阶项 xff0c 保
  • EKF SLAM 以及MSCKF 学习

    参考 xff1a https zhuanlan zhihu com p 21381490 https citeseerx ist psu edu viewdoc download jsessionid 61 FA1024834F74311E
  • PX4_ECL_EKF代码分析1

    写在前面 源码版本 xff1a 1 6 0rc1 源码位置1 xff1a Firmware 1 6 0rc1 src modules ekf2 main cpp 源码位置2 xff1a Firmware 1 6 0rc1 src lib e
  • 了解卡尔曼滤波器4--非线性状态估算器(EKF,UKF,PF)

    一般来说 xff0c 我们希望我们的生活是线性的 xff0c 就像这条线 xff0c 这可能表示成功 收入或者幸福 但实际上 xff0c 生活并不是线性的 xff0c 它充满了起伏 xff0c 有时甚至更复杂 如果您是工程师 xff0c 您
  • 从程序中学习EKF-SLAM(一)

    在一次课程的结课作业上 xff0c 作业要求复写一个EKF SLAM系统 xff0c 我从中学到了好多知识 作为一个典型轻量级slam系统 xff0c 这个小项目应该特别适合于slam系统入门 xff0c 可以了解到经典卡尔曼滤波器在sla
  • 控制算法学习 四、扩展卡尔曼滤波EKF

    控制算法学习 四 扩展卡尔曼滤波EKF 前言非线性系统状态 观测方程线性化扩展卡尔曼滤波EKF后记 前言 经典卡尔曼滤波的使用场景是线性系统 xff0c 但现实应用时 xff0c 大多数系统都是非线性的 扩展卡尔曼滤波 xff08 Exte
  • 无人机姿态解算_扩展卡尔曼滤波(2)

    一 扩展卡尔曼滤波 KF和EKF的公式对比 xff08 基本没差别 xff09 二 扩展卡尔曼五个公式 利用扩展卡尔曼滤波估计四元数 下图是论文中的截图 可以和前面的卡尔曼滤波估计高度文章的那五个公式对应一下 观测矩阵的确定 三 代码的实现
  • ekf pose使用方法 ros_【ROS-Gazebo】为什么选择SDF?

    前言 这是一个系列小文章 xff0c 主要介绍在ROS Gazebo中如何更好地使用SDF格式建模与仿真 众所周知 xff0c URDF是ROS的原生支持格式 xff0c 但在某些情况下 xff08 尤其是Gazebo仿真时 xff09 x
  • CKF MCSCKF UKF EKF滤波性能对比

    CKF MCSCKF UKF EKF滤波性能对比 在非线性滤波中 比较了CKF MCSCKF UKF EKF 几种非线性滤波的性能 用MATLAB进行仿真 八维非线性滤波中 CKF MCSCKF 比较稳定 EKF UKF 表现不好 MATL
  • EKF SLAM

    EKF 方法是解决 SLAM 问题的一种经典方法 xff0c 其应用依赖于运动模型和观测模型的高斯噪声假设 在 SLAM 问题首次提出不久后 xff0c Smith 和 Cheesman 及 Durrant Whyte对机器人和路标间的几何
  • (1)robot_pose_ekf扩展卡尔曼滤波功能包的使用方法

    这里写自定义目录标题 robot pose ekf功能包的编译安装如何使用机器人姿势EKF 编译运行robot pose ekf订阅的话题发布的话题机器人姿态ekf如何工作参考文章 robot pose ekf功能包的编译安装 ros wi

随机推荐