STM32控制HC-05蓝牙模块进行通信

2023-05-16

一、HC-05蓝牙模块

1. 简介

HC-05主从一体蓝牙串口模块采用英国CSR公司BlueCore4系列的芯片,符合符合蓝牙2.0+EDR规范,可以同带同种蓝牙功能的电脑、蓝牙主机和手机等智能终端配对。

2. 主要参数

名称说明
接口说明TTL,兼容3.3V/5V单片机系统
波特率4800、9600(默认)、19200、38400、57600、115200、230400、460800、921600、1382400
工作温度-25℃~75℃
工作电压DC3.3V~5.0V
工作电流配对中:30~40mA;配对完毕未通信:1~8mA;通信中:5~20mA

3. 引脚说明

模块通过6个2.54mm间距的排针与外部连接

这里写图片描述

由主要一部分的电路图可以看出,模块引出的六脚分别对应模块内的六个管脚

管脚号名称类型功能描述对应的模块引脚
1UART_TXDCMOS 输出串口数据输出TX
2UART_RXDCMOS 输入串口数据输入RX
12VCC3.3电源输入+3.3V电源VCC
-GNDGND
32PIO(9)输出配对状态输出; 配对成功输出高电平,未配对则输出低电平。STATE(LED)
34PIO(11)输入模块状态切换脚,高电平->AT 命令响应工作状态;低电平或悬空->蓝牙常规工作状态。EN(KEY)

二、USART串口

HC05蓝牙模块通过串口与STM32进行通信,完成数据的发送和接收。

1. 硬件连接

选用STM32板子上的USART2与蓝牙模块通信:

这里写图片描述

由stm32原理图可以得出连线方式:

STM32        <------->       hc05

PA2(U2_TX)   <------->       RX

PA3(U2_RX)   <------->       TX

2. 驱动代码

“usart2.h” :

#ifndef __USART2_H
#define __USART2_H	 

#include "sys.h"
#include <stdarg.h>
#include <stdio.h>
#include <string.h>

//对USART2相关参数的一层封装
//**********************************************************************************
#define RCC_USART  RCC_APB2Periph_GPIOA
#define RCC_TX  RCC_APB2Periph_GPIOA
#define RCC_RX RCC_APB2Periph_GPIOA
#define USART USART2
#define USART_TX_Pin GPIO_Pin_2; //USART2_TX   PA.2
#define USART_RX_Pin GPIO_Pin_3; //USART2_RX   PA.3
//**********************************************************************************

#define USART2_MAX_RECV_LEN		200					//最大接收缓存字节数
#define USART2_MAX_SEND_LEN		200					//最大发送缓存字节数


#define USART2_RX_EN 			1					//0,不接收;1,接收.

extern u8  USART2_RX_BUF[USART2_MAX_RECV_LEN]; 		//接收缓冲,最大USART2_MAX_RECV_LEN字节
extern u8  USART2_TX_BUF[USART2_MAX_SEND_LEN]; 		//发送缓冲,最大USART2_MAX_SEND_LEN字节
extern u16 USART2_RX_STA;   						//接收数据状态

void TIM4_Set(u8 sta);
void TIM4_Init(u16 arr,u16 psc);
void UART_DMA_Config(DMA_Channel_TypeDef*DMA_CHx,u32 cpar,u32 cmar);
void UART_DMA_Enable(DMA_Channel_TypeDef*DMA_CHx,u8 len);
void u2_printf(char* fmt, ...);

#endif

“usart2.c” :

#include "usart2.h"


//串口发送缓存区 	
__align(8) u8 USART2_TX_BUF[USART2_MAX_SEND_LEN]; 	//发送缓冲,最大USART2_MAX_SEND_LEN字节
#ifdef USART2_RX_EN   								//如果使能了接收   	  
//串口接收缓存区 	
u8 USART2_RX_BUF[USART2_MAX_RECV_LEN]; 				//接收缓冲,最大USART2_MAX_RECV_LEN个字节.


//通过判断接收连续2个字符之间的时间差不大于10ms来决定是不是一次连续的数据.
//如果2个字符接收间隔超过10ms,则认为不是1次连续数据.也就是超过10ms没有接收到
//任何数据,则表示此次接收完毕.
//接收到的数据状态
//[15]:0,没有接收到数据;1,接收到了一批数据.
//[14:0]:接收到的数据长度
u16 USART2_RX_STA=0;   	
void USART2_IRQHandler(void)
{
	u8 res;	    
	if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET)//接收到数据
	{	 
 
	res =USART_ReceiveData(USART2);		
		if(USART2_RX_STA<USART2_MAX_RECV_LEN)		//还可以接收数据
		{
			TIM_SetCounter(TIM4,0);//计数器清空        				 
			if(USART2_RX_STA==0)TIM4_Set(1);	 	//使能定时器4的中断 
			USART2_RX_BUF[USART2_RX_STA++]=res;		//记录接收到的值	 
		}else 
		{
			USART2_RX_STA|=1<<15;					//强制标记接收完成
		} 
	}  											 
}   

//初始化USART2
//bound:波特率	 
void USART2_Init(u32 bound)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_USART,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_TX,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_RX,ENABLE);

	
	USART_DeInit(USART);  //复位串口
	
	
	
	//UART2_TX PA.2
	GPIO_InitStructure.GPIO_Pin=USART_TX_Pin;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	//USART2_RX   PA.3
	GPIO_InitStructure.GPIO_Pin=USART_RX_Pin;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING; //浮空输入
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	USART_InitStructure.USART_BaudRate = bound;//一般设置为9600;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
	USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
	USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式
	
	USART_Init(USART,&USART_InitStructure); //初始化串口
	
	USART_DMACmd(USART2,USART_DMAReq_Tx,ENABLE);  	//使能串口2的DMA发送
	//UART_DMA_Config(DMA1_Channel7,(u32)&USART2->DR,(u32)USART2_TX_BUF);//DMA1通道7,外设为串口2,存储器为USART2_TX_BUF 
	USART_Cmd(USART2, ENABLE);                    //使能串口 
	
	#ifdef USART2_RX_EN		  	//如果使能了接收
	//使能接收中断
  USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启中断   
	
	NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级2
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
	NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器
	TIM4_Init(99,7199);		//10ms中断
	USART2_RX_STA=0;		//清零
	TIM4_Set(0);			//关闭定时器4
	#endif	 	
}

//arr:自动重装值。
//psc:时钟预分频数		 
void TIM4_Init(u16 arr,u16 psc)
{	
	NVIC_InitTypeDef NVIC_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); //时钟使能//TIM4时钟使能    
	
	//定时器TIM4初始化
	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值	
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值
	TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位
 
	TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE ); //使能指定的TIM4中断,允许更新中断

	 	  
	NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1 ;//抢占优先级1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;		//子优先级2
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
	NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器
	
}
//定时器4中断服务程序		    
void TIM4_IRQHandler(void)
{ 	
	if (TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET)//是更新中断
	{	 			   
		USART2_RX_STA|=1<<15;	//标记接收完成
		TIM_ClearITPendingBit(TIM4, TIM_IT_Update  );  //清除TIMx更新中断标志    
		TIM4_Set(0);			//关闭TIM4  
	}	    
}
//设置TIM4的开关
//sta:0,关闭;1,开启;
void TIM4_Set(u8 sta)
{
	if(sta)
	{
       
		TIM_SetCounter(TIM4,0);//计数器清空
		TIM_Cmd(TIM4, ENABLE);  //使能TIMx	
	}else TIM_Cmd(TIM4, DISABLE);//关闭定时器4	   
}

//串口2,printf 函数
//确保一次发送数据不超过USART2_MAX_SEND_LEN字节
void u2_printf(char* fmt,...)  
{  
	va_list ap;
	va_start(ap,fmt);
	vsprintf((char*)USART2_TX_BUF,fmt,ap);
	va_end(ap);
	while(DMA_GetCurrDataCounter(DMA1_Channel7)!=0);	//等待通道7传输完成   
	UART_DMA_Enable(DMA1_Channel7,strlen((const char*)USART2_TX_BUF)); 	//通过dma发送出去
}

#endif

//DMA1的各通道配置
//这里的传输形式是固定的,这点要根据不同的情况来修改
//从存储器->外设模式/8位数据宽度/存储器增量模式
//DMA_CHx:DMA通道CHx
//cpar:外设地址
//cmar:存储器地址    
void UART_DMA_Config(DMA_Channel_TypeDef*DMA_CHx,u32 cpar,u32 cmar)
{
	DMA_InitTypeDef DMA_InitStructure;
 	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);	//使能DMA传输
  DMA_DeInit(DMA_CHx);   //将DMA的通道1寄存器重设为缺省值
	DMA_InitStructure.DMA_PeripheralBaseAddr = cpar;  //DMA外设ADC基地址
	DMA_InitStructure.DMA_MemoryBaseAddr = cmar;  //DMA内存基地址
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;  //数据传输方向,从内存读取发送到外设
	DMA_InitStructure.DMA_BufferSize = 0;  //DMA通道的DMA缓存的大小
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;  //外设地址寄存器不变
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //内存地址寄存器递增
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;  //数据宽度为8位
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度为8位
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;  //工作在正常缓存模式
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //DMA通道 x拥有中优先级 
	DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //DMA通道x没有设置为内存到内存传输
	DMA_Init(DMA_CHx, &DMA_InitStructure);  //根据DMA_InitStruct中指定的参数初始化DMA的通道USART1_Tx_DMA_Channel所标识的寄存器	
} 
//开启一次DMA传输
void UART_DMA_Enable(DMA_Channel_TypeDef*DMA_CHx,u8 len)
{
	DMA_Cmd(DMA_CHx, DISABLE );  //关闭 指示的通道        
	DMA_SetCurrDataCounter(DMA_CHx,len);//DMA通道的DMA缓存的大小	
	DMA_Cmd(DMA_CHx, ENABLE);           //开启DMA传输
}	   

三、STM32控制HC05蓝牙模块

1. 控制方式

HC-05 嵌入式蓝牙串口通讯模块(以下简称模块)具有两种工作模式:命令响应工作
模式和自动连接工作模式,在自动连接工作模式下模块又可分为主(Master)、从(Slave)
和回环(Loopback)三种工作角色。当模块处于自动连接工作模式时,将自动根据事先设定
的方式连接的数据传输;当模块处于命令响应工作模式时能执行下述所有 AT 命令,用户可
向模块发送各种 AT 指令,为模块设定控制参数或发布控制命令。

HC05 蓝牙串口模块所有功能都是通过 AT 指令集控制

1.1 进入AT状态

EN(PIO11) 置高,进入命令响应工作模式(AT指令状态)

EN置低或悬空,进入蓝牙常规工作状态

1.2 指令结构

AT+< CMD ><=PARAM>

CMD(指令)和PARAM(参数)是可选的

需要在发送末尾添加回车符(\r\n)

1.3 常用指令

内容指令响应参数
模块复位(重启)AT+RESETOK
获取软件版本号AT+VERSION?+VERSION:OK
获取模块蓝牙地址AT+ADDR?+ADDR:OKParam:模块蓝牙地址
设置设备名称AT+NAME=OKParam:蓝牙设备名称;默认名称:“HC-05”
查询设备名称AT+NAME+NAME:OK——成功;FAIL——失败Param:蓝牙设备名称;默认名称:“HC-05”
获取远程蓝牙设备名称AT+RNAME?+NAME:OK——成功;FAIL——失败Param1:远程蓝牙设备地址;Param1:远程蓝牙设备名称
设置模块角色AT+ROLE=OKParam:0——从角色(Slave);1——主角色(Master);2——回环角色(Slave-Loop);
查询模块角色AT+ROLE?+ROLE:OKParam:0——从角色(Slave);1——主角色(Master);2——回环角色(Slave-Loop);默认值: 0
设置配对码AT+PSWD=OKParam:配对码
查询配对码AT+PSWD?+PSWD:OKParam:配对码;默认名称:“1234”
设置串口参数码AT+UART=,,+ UART=,,OKParam1:波特率(bits/s);Param2:停止位;Param3:校验位
查询串口参数码AT+UART?OKParam1:波特率(bits/s);Param2:停止位;Param3:校验位;默认设置: 9600, 0, 0

还有许多指令可以查询HC05蓝牙指令集

2. 初始化HC05蓝牙模块

先将板子上与HC05蓝牙模块相连的GPIO初始化,再初始化串口(设置好波特率),再将模块设置为主模块

设置主模块步骤:

1、 PIO11 置高。
2、上电,模块进入 AT 命令响应状态。
3、设置波特率 9600,数据位 8 位,停止位 1 位,无校验位,
无流控制。
4、串口发送字符“AT+ROLE=1\r\n”,成功返回“OK\r\n”,其中\r\n 为回车换行。
5、 PIO 置低,重新上电,模块为主模块,自动搜索从模块,建立连接。

模块角色说明:

Slave(从角色)——被动连接;
Slave-Loop(回环角色)——被动连接,接收远程蓝牙主设备数据并将数据原样返回给远程蓝
牙主设备;
Master(主角色)——查询周围 SPP 蓝牙从设备,并主动发起连接,从而建立主、从蓝牙设
备间的透明数据传输通道。

2.1 硬件连接

除了之前所说的USART2的连接,还应连接模块上另外4个引脚:

STM32        <------->       hc05

PC4          <------->       EN (如果是有按键的HC05模块则不接)

PA4          <------->       STATE

VCC5V        <------->       VCC

GND          <------->       GND

注意有按键的HC05蓝牙模块,不要连EN脚,并且在初始化时按住按键

2.2 驱动代码

“hc05.h”:

#ifndef __HC05_H
#define __HC05_H

#include "sys.h"

//连接模块GPIO相关参数的一层封装
//**********************************************************************************
#define RCC_STATE  RCC_APB2Periph_GPIOA
#define RCC_EN		RCC_APB2Periph_GPIOC
#define STATE_Pin GPIO_Pin_4 
#define EN_Pin GPIO_Pin_4
//**********************************************************************************

#define HC05_EN  	    PCout(4) 	//蓝牙控制EN信号
#define HC05_STATE  	PAin(4)		//蓝牙连接状态信号


u8 HC05_Init(void);
//void HC05_CFG_CMD(u8 *str);
u8 HC05_Get_Role(void);
u8 HC05_Set_Cmd(u8* atstr);	
#endif

“hc05.c”:

#include "hc05.h"
#include "usart2.h"

//初始化HC05模块
//返回值:0,成功;1,失败.
u8 HC05_Init(void)
{
u8 retry=10,t;	  		 
u8 temp=1;

GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB2PeriphClockCmd(RCC_EN|RCC_STATE,ENABLE);	//使能PORTA C时钟	

GPIO_InitStructure.GPIO_Pin = STATE_Pin;				 // 端口配置
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; 		 //上拉输入
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
GPIO_Init(GPIOA, &GPIO_InitStructure);					 //根据设定参数初始化PA4
 

GPIO_InitStructure.GPIO_Pin = EN_Pin;				 // 端口配置
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
GPIO_Init(GPIOC, &GPIO_InitStructure);					 //根据设定参数初始化PC4

GPIO_SetBits(GPIOC,EN_Pin);

USART2_Init(9600);	//初始化串口2为:9600,波特率.

delay_ms(1500);

while(retry--)
{
	HC05_EN=1;					//KEY置高,进入AT模式
	delay_ms(10);
	u2_printf("AT\r\n");		//发送AT测试指令
	HC05_EN=0;					//KEY拉低,退出AT模式
	for(t=0;t<10;t++) 			//最长等待50ms,来接收HC05模块的回应
	{
		if(USART2_RX_STA&0X8000)break;
		delay_ms(5);
	}		
	if(USART2_RX_STA&0X8000)	//接收到一次数据了
	{
		temp=USART2_RX_STA&0X7FFF;	//得到数据长度
		USART2_RX_STA=0;			 
		if(temp==4&&USART2_RX_BUF[0]=='O'&&USART2_RX_BUF[1]=='K')
		{
			temp=0;//接收到OK响应
			break;
		}
	}			    		
}		    
if(retry==0)temp=1;	//检测失败
return temp;	 

}

//获取ATK-HC05模块的角色
//返回值:0,从机;1,主机;0XFF,获取失败.							  
u8 HC05_Get_Role(void)
{	 		    
	u8 retry=0X0F;
	u8 temp,t;
	while(retry--)
	{
		HC05_EN=1;					//KEY置高,进入AT模式
		delay_ms(10);
		u2_printf("AT+ROLE?\r\n");	//查询角色
		for(t=0;t<20;t++) 			//最长等待200ms,来接收HC05模块的回应
		{
			delay_ms(10);
			if(USART2_RX_STA&0X8000)break;
		}		
		HC05_EN=0;					//KEY拉低,退出AT模式
		if(USART2_RX_STA&0X8000)	//接收到一次数据了
		{
			temp=USART2_RX_STA&0X7FFF;	//得到数据长度
			USART2_RX_STA=0;			 
			if(temp==13&&USART2_RX_BUF[0]=='+')//接收到正确的应答了
			{
				temp=USART2_RX_BUF[6]-'0';//得到主从模式值
				break;
			}
		}		
	}
	if(retry==0)temp=0XFF;//查询失败.
	return temp;
} 			
//ATK-HC05设置命令
//此函数用于设置ATK-HC05,适用于仅返回OK应答的AT指令
//atstr:AT指令串.比如:"AT+RESET"/"AT+UART=9600,0,0"/"AT+ROLE=0"等字符串
//返回值:0,设置成功;其他,设置失败.							  
u8 HC05_Set_Cmd(u8* atstr)
{	 		    
	u8 retry=0X0F;
	u8 temp,t;
	while(retry--)
	{
		HC05_EN=1;					//KEY置高,进入AT模式
		delay_ms(10);
		u2_printf("%s\r\n",atstr);	//发送AT字符串
		HC05_EN=0;					//KEY拉低,退出AT模式
		for(t=0;t<20;t++) 			//最长等待100ms,来接收HC05模块的回应
		{
			if(USART2_RX_STA&0X8000)break;
			delay_ms(5);
		}		
		if(USART2_RX_STA&0X8000)	//接收到一次数据了
		{
			temp=USART2_RX_STA&0X7FFF;	//得到数据长度
			USART2_RX_STA=0;			 
			if(temp==4&&USART2_RX_BUF[0]=='O')//接收到正确的应答了
			{			
				temp=0;
				break;			 
			}
		}		
	}
	if(retry==0)temp=0XFF;//设置失败.
	return temp;
} 

工程代码获取

可以关注公众号 “山不高海不深”,回复“蓝牙代码”得到:
在这里插入图片描述

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

STM32控制HC-05蓝牙模块进行通信 的相关文章

  • 51单片机 数码管中断操作

    实践目的 1 掌握中断的概念和思想 2 掌握51单片机中断系统和相关软硬件设计 实践内容 1 利用单片机的P0口接数码管的字段脚 P1 0脚接共阴极 P3 2 P3 3引脚接独立按键产生外部中断信号 编写程序 当程序正常运行时数码管显示H字
  • 如何更改闪存的起始地址?

    我正在使用 STM32F746ZG 和 FreeRTOS Flash的起始地址是0x08000000 但我想把它改成0x08040000 我通过谷歌搜索了这个问题 但没有找到解决方案 我更改了链接器脚本 如下所示 MEMORY RAM xr
  • 以字符串形式接收数字(uart)

    我正在尝试通过 uart 接收一个包装为字符串的数字 我发送数字 1000 所以我得到 4 个字节 空字符 但是 当我使用 atoi 将数组转换为数字并将整数与 1000 进行比较时 我并不总是得到正确的数字 这是我用于接收号码的中断处理函
  • 134-基于stm32单片机矿井瓦斯天然气浓度温湿度检测自动通风系统Proteus仿真+源程序...

    资料编号 134 一 功能介绍 1 采用stm32单片机 LCD1602显示屏 独立按键 ds1302时钟 DHT11温湿度 电机 蜂鸣器 制作一个基于stm32单片机矿井瓦斯天然气浓度温湿度检测自动通风系统Proteus仿真 2 通过DH
  • 137-基于stm32单片机智能保温杯控制装置Proteus仿真+源程序

    资料编号 137 一 功能介绍 1 采用stm32单片机 LCD1602显示屏 独立按键 DS18B20传感器 电机 制作一个基于stm32单片机智能保温杯控制装置Proteus仿真 2 通过DS18b20传感器检测当前保温杯水的温度 并且
  • STM32用一个定时器执行多任务写法

    文章目录 main c include stm32f4xx h uint32 t Power check times 电量检测周期 uint32 t RFID Init Check times RFID检测周期 int main Timer
  • [屏驱相关]【SWM166-SPI-Y1.28C1测评】+ 有点惊艳的开箱

    耳闻华芯微特许久了 看到论坛得评测活动赶紧上了末班车 毕竟对有屏幕得板子也是很喜欢得 京东快递小哥客客气气 微笑着把快递给了我 好评 直接拆了包 在此之前没看过视频号 所以这个圆盘盘得模具还是有点惊喜的 正面照如下 开机有灯光秀 还有动画
  • [MM32硬件]搭建灵动微MM32G0001A6T的简易开发环境

    作为学习单片机的经典 自然是通过GPIO点亮LED 或者是响应按钮的外部中断例程 这我们看看SOP8封装的芯片MM32G0001A6T得引脚 除了VDD和GND固定外 我们可以使用PA14 PA1 PA13 PA15 PA2 PA3这六个G
  • 硬件基础-电容

    电容 本质 电容两端电压不能激变 所以可以起到稳定电压作用 充放电 电容量的大小 想使电容容量大 使用介电常数高的介质 增大极板间的面积 减小极板间的距离 品牌 国外 村田 muRata 松下 PANASONIC 三星 SAMSUNG 太诱
  • 解决KEIL编译慢问题

    两种方案 使用v6版本的ARM Compiler 如果v6版本编译不过 必须使用v5版本的 则可以勾选掉Browse Information选项 提升很明显 1分多钟能优化到几秒 看代码量 但是这个有个弊端 在KEIL中会影响函数跳转 建议
  • 解决KEIL编译慢问题

    两种方案 使用v6版本的ARM Compiler 如果v6版本编译不过 必须使用v5版本的 则可以勾选掉Browse Information选项 提升很明显 1分多钟能优化到几秒 看代码量 但是这个有个弊端 在KEIL中会影响函数跳转 建议
  • 1.69寸SPI接口240*280TFT液晶显示模块使用中碰到的问题

    1 69寸SPI接口240 280TFT液晶显示模块使用中碰到的问题说明并记录一下 在网上买了1 69寸液晶显示模块 使用spi接口 分辨率240 280 给的参考程序是GPIO模拟的SPI接口 打算先移植到FreeRtos测试 再慢慢使用
  • STM32 暂停调试器时冻结外设

    当到达断点或用户暂停代码执行时 调试器可以停止 Cortex 中代码的执行 但是 当皮质停止在暂停状态下执行代码时 调试器是否会冻结其他外设 例如 DMA UART 和定时器 您只能保留时间 r 取决于外围设备 我在进入主函数时调用以下代码
  • Freertos低功耗管理

    空闲任务中的低功耗Tickless处理 在整个系统运行得过程中 其中大部分时间都是在执行空闲任务的 空闲任务之所以执行 因为在系统中的其他任务处于阻塞或者被挂起时才会执行 因此可以将空闲任务的执行时间转换成低功耗模式 在其他任务解除阻塞而准
  • 嵌入式开发--STM32G4系列片上FLASH的读写

    这个玩意吧 说起来很简单 就是几行代码的事 但楞是折腾了我大半天时间才搞定 原因后面说 先看代码吧 读操作 读操作很简单 以32位方式读取的时候是这样的 data IO uint32 t 0x0800F000 需要注意的是 当以32位方式读
  • STM32H5 Nucleo-144 board开箱

    文章目录 开发板资料下载 目标 点亮LD1 绿 LD2 黄 和LD3 红 三个LED灯 开箱过程 博主使用的是STM32CubeMX配置生成代码 具体操作如下 打开STM32CubeMX File gt New project 选择开发板型
  • 嵌入式 C++11 代码 — 我需要 volatile 吗?

    采用 Cortex M3 MCU STM32F1 的嵌入式设备 它具有嵌入式闪存 64K MCU固件可以在运行时重新编程闪存扇区 这是由闪存控制器 FMC 寄存器完成的 所以它不像a b那么简单 FMC 获取缓冲区指针并将数据刻录到某个闪存
  • STM32 上的位置无关代码 - 指针

    我已成功在 STM32 上构建并运行位置无关的代码 向量表和 GOT 已修补 一切正常 但我对这样的代码有问题 double myAdd double x return x 0 1 double ptrmyAdd double myAdd
  • PWM DMA 到整个 GPIO

    我有一个 STM32F4 我想对一个已与掩码进行 或 运算的 GPIO 端口进行 PWM 处理 所以 也许我们想要 PWM0b00100010一段时间为 200khz 但随后 10khz 后 我们现在想要 PWM0b00010001 然后
  • STM32F0、ST-link v2、OpenOCD 0.9.0:打开失败

    我在用着发射台 http www ti com ww en launchpad about htmlgcc arm none eabi 4 9 2015q2 为 STM32F0 进行编译 现在我想使用该集合中的 arm none eabi

随机推荐