视觉SLAM理论——位姿的理解与间接求解

2023-05-16

目录:
  • 位姿的定义
  • 位姿与变换矩阵的区别与联系
  • 位姿的求解方法
位姿的定义

  在SLAM中,位姿是世界坐标系相机坐标系的变换,包括旋转平移。根据以上定义可以衍生以下几个问题:

1.世界坐标系在哪?
通常世界坐标系是自己定义的,一经定义,便不可更改,通常构图所用点的坐标便是世界坐标系下的坐标。

2.相机坐标系在哪?
相机坐标系是指以相机的光心为原点所构成的坐标系,由于相机是运动的,所以相机坐标系也是运动的。

3.如何表达位姿?
位姿通常以三维空间中的欧式变换来表示,变换矩阵T最常用,也可以分别用旋转R和平移向量t来表示。因为相机坐标系是运动的,所以位姿也是变换的。

  设一点 P P P在世界坐标系下的坐标为 p w p_w pw,相机坐标系下的坐标为 p C p_C pC,根据位姿的定义有:

p w = T 1 ∗ p c p_w=T_1*p_c pw=T1pc
p c = T 2 ∗ p w p_c=T_2*p_w pc=T2pw

  通常把 T 1 , T 2 T_1,T_2 T1,T2记作 T c w Tcw Tcw T w c Twc Twc,其中 T 1 , T 2 T_1,T_2 T1,T2是互为逆矩阵,因此有:

p w = T w c ∗ p c p_w=Twc*p_c pw=Twcpc
p c = T c w ∗ p w = T w c − 1 ∗ p w p_c=Tcw*p_w=Twc^{-1}*p_w pc=Tcwpw=Twc1pw

   T w c , T c w Twc,Tcw Twc,Tcw是位姿的两种表达方式,实际过程中根据情况自己选择。

位姿与变换矩阵的区别与联系

  由定义可知,位姿本质上是变换矩阵,特指世界坐标系与相机坐标系之间的变化关系。
  而变换矩阵是任意两个空间(坐标点)之间的欧式变换关系。
在这里插入图片描述
  图中的Ti为位姿,Tij为变换矩阵,分别表达了不同坐标系之间的变换。

位姿的求解方法

  这里讨论的是位姿的一种间接求解方法,不同于重投影误差优化,对极约束等直接求解方法,这类求解方法常常是作为位姿直接求解方法的初始值。关于直接求解位姿的方法可参考前面写的一系列文章。
在这里插入图片描述
  如图所示,结合上面的基本推倒,有以下式子成立:

p c 1 = T 1 ∗ p w p_{c1}=T_1*p_w pc1=T1pw
p c 2 = T 2 ∗ p w p_{c2}=T_2*p_w pc2=T2pw
p c 2 = T 12 ∗ p c 1 p_{c2}=T_{12}*p_{c1} pc2=T12pc1

  利用前面两式进行代换:

T 2 ∗ p w = T 12 ∗ T 1 ∗ p w T_2*p_w=T_{12}*T_1*p_w T2pw=T12T1pw

  约去 p w p_w pw得:

T 12 = T 2 T 1 − 1 T_{12}=T_2T_1^{-1} T12=T2T11
T 2 = T 12 ∗ T 1 T_2=T_{12}*T_1 T2=T12T1

   T 12 T_{12} T12是一类特殊的变换矩阵,表达的是相机之间的运动,并且跟位姿有着非常密切的联系。在实际的使用过程中,通常可以按照以下步骤进行使用:

1.利用初始化算法得到 T 1 , p c 1 T_1,p_{c1} T1,pc1
2.设定一个初始值 T 12 T_{12} T12
3.令 T 2 = T 12 ∗ T 1 , p c 2 = p c 1 T_2=T_{12}*T_1,p_{c2}=p_{c1} T2=T12T1,pc2=pc1,得到一个初步的 T 2 T_2 T2 p c 2 p_{c2} pc2
4.利用重投影误差重新估计 T 2 T_2 T2 p c 2 p_{c2} pc2
5.重新更新 T 12 T_{12} T12
6.令 T 3 = T 12 ∗ T 1 , p c 3 = p c 2 T_3=T_{12}*T_1,p_{c3}=p_{c2} T3=T12T1,pc3=pc2,得到一个初步的 T 3 T_3 T3 p c 3 p_{c3} pc3…依次类推求得每一个 T i j , p c i T_{ij},p_{ci} Tijpci

  经过1234,一帧图像的优化过程便结束了,后面是进行连续的图像追踪与优化。

  值得注意的是,我们可以把世界坐标系的原点与相机的原点重合,这样得到的 T i j T_{ij} Tij会更特殊,会直接包含位姿中的平移信息。

参考文献:
[1]视觉SLAM十四讲
[2]https://blog.csdn.net/cnn_block/article/details/88790909

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

视觉SLAM理论——位姿的理解与间接求解 的相关文章

  • SLAM方法汇总

    原文 http blog csdn net smartxxyx article details 53068855 目录 SLAM概述 SLAM一般处理流程包括track和map两部分 所谓的track是用来估计相机的位姿 也叫front e
  • 《视觉SLAM十四讲》第一版源码slambook编译调试

    slambook master ch2 编译正常 log如下 slambook master ch2 mkdir build cd build cmake make j8 The C compiler identification is G
  • 正交矩阵的保范性:正交变换不改变向量的长度(范数)

    在推导使用SVD分解解方程时 用到了正交矩阵的保范性这一性质 1 正交矩阵定义 A mathbf A intercal A A A A
  • 各向异性(anisotropic)浅提

    文章目录 各向异性 anisotropic 定义 哪种物体具有各向异性反射 什么导致各向异性反射 总结 各向异性 anisotropic 定义 它指一种存在方向依赖性 这意味着在不同的方向不同的特性 相对于该属性各向同性 当沿不同轴测量时
  • 激光SLAM直接线性方法里程计运动模型及标定

    原创作者 W Tortoise 原创作者文章 https blog csdn net learning tortosie article details 107763626 1 里程计运动模型 1 1 两轮差分底盘的运动模型 1 2 三轮全
  • 速腾聚创雷达最新驱动安装(包含ring和timestamp)运行lio-sam

    记录一下搞slam的过程 ring和timestamp 最近想跑lio sam 需要用到ring和timestamp两个参数 lio sam作者用的velodyne雷达是带这两个参数的 但是rs雷达的老版驱动录制的点云包没有这两个参数 在g
  • Sophus使用记录

    sophus库是一个基于Eigen的C 李群李代数库 可以用来方便地进行李群李代数的运算 头文件 主要用到以下两个头文件 include
  • LeGO-LOAM 系列(1): LeGO-LOAM 安装以及概述

    一 github GitHub RobustFieldAutonomyLab LeGO LOAM 二 安装依赖 1 ROS Ubuntu 64 bit 16 04 ROS Kinetic 比较常规 就不赘述了 2 gtsam Georgia
  • 图像匹配算法

    图像匹配算法分为3类 基于灰度的匹配算法 基于特征的匹配算法 基于关系的匹配算法 1 基于灰度的模板匹配算法 模板匹配 Blocking Matching 是根据已知模板图像到另一幅图像中寻找与模板图像相似的子图像 基于灰度的匹配算法也称作
  • 关于GPS、惯导、视觉里程计的几个定义

    1 首先写几个定义 惯性导航系统 Inertial Navigation System INS 全球定位卫星系统 Global Navigation Satellite System GNSS GNSS 包括全球定位系统 Global Po
  • 互转(经纬度、地心坐标、东北天坐标)

    Part1三种坐标系介绍 经纬度坐标 假设空间某点P 用经纬度表示的话 你们B代表纬度 L代表经度 H代表大地高 纬度B P点沿着地球法线方向与赤道面的夹角 向北为正称为北纬 0 90 向南为负称为南纬 0 90 实际表示可以用 90 90
  • Lego-LOAM IMU坐标系变换的详细记录

    Lego LOAM IMU坐标系变换的详细记录 0 基础知识 1 IMU 重力加速度消除 2 相机坐标系 camera 到初始坐标系 camera init 的转换 最近看了Lego LOAM 的IMU部分 没看懂IMU的坐标系变换 看其它
  • Eigen::aligned_allocator

    如果STL容器中的元素是Eigen库数据结构 例如这里定义一个vector容器 元素是Matrix4d 如下所示 vector
  • ORB-SLAM2:基于可识别特征的自主导航与地图构建

    目录 ORB SLAM2 基于可识别特征的自主导航与地图构建 简介 地图 A 地图特征点或3D ORB B 关键帧 C 可视化图像 位置识别 A 图像识别数据库 B 高效优化的ORB匹配 C 视觉一致性 自主导航追踪 A ORB特征获取 B
  • 无人车

    1 无人车四大核心技术 自动驾驶实际包含三个问题 一是我在哪 二是我要去哪 三是如何去 第一个问题是环境感知和精确定位 无人车需要的是厘米级定位 厘米级定位是无人驾驶的难点之一 不光是车辆本身的语义级定位 还有一个绝对坐标定位 第二个问题是
  • 【Pytorch论文相关代码】使用SOLD2预训练好的模型检测与匹配线段(自己的数据集)

    文章目录 前言 使用流程 检测与匹配结果 前言 论文链接 SOLD2 Self supervised Occlusion aware Line Description and Detection 论文源码 https github com
  • 视觉SLAM漫谈

    视觉SLAM漫谈 1 前言 开始做SLAM 机器人同时定位与建图 研究已经近一年了 从一年级开始对这个方向产生兴趣 到现在为止 也算是对这个领域有了大致的了解 然而越了解 越觉得这个方向难度很大 总体来讲有以下几个原因 入门资料很少 虽然国
  • SLAM练习题(十一)—— G2O实战

    SLAM 学习笔记 写在前面的话 算是一点小小的感悟吧 估计位姿的方法有线性方法和非线性方法 线性方法就是特征点法中的2D 2D的对极约束 3D 2D的PnP问题 非线性方法有BA优化 它将位姿的估计问题转换成了一个误差关于优化量的最小二乘
  • LIO-SAM运行自己数据包遇到的问题解决--SLAM不学无数术小问题

    LIO SAM 成功适配自己数据集 注意本文测试环境 Ubuntu18 04 ROS melodic版本 笔者用到的硬件以简单参数 激光雷达 速腾聚创16线激光雷达 RS Lidar 16 IMU 超核电子CH110型 9轴惯导 使用频率1
  • ORB_SLAM2运行官方数据集/自己数据集

    官方数据集运行结果 WeChat 20230210194425 可以正常运行 自己数据集运行结果 自己的数据集 主要是用手机摄像头采集的实验室进行了一下简单的运行 可以成功运行 但是由于查看的相关程序的是死循环不能像运行官方数据集那样完整保

随机推荐

  • Keil软件仿真

    首先就是配置上面图中的debug xff0c 选择软件仿真 然后是选择芯片 xff0c 根据自己的硬件芯片选择 8号标注是进入该图中的debyg模式 1号标注 xff1a 这个是一个RST按钮 xff0c 和硬件一样是复位的功能 2号标注
  • STM32F103系列NVIC中断优先级分组讲解

    一 简介 CM3内核支持256个中断 xff0c 16个内核中断 xff0c 240个外部中断 xff0c 并且拥有256级的可编程中断设置 但是STM32只用到了CM3内核的一部分 xff0c STM32有84个中断 xff0c 包括16
  • BOM详解

    1 BOM 什么是 Browser Object Model 专门操作浏览器窗口的API 没有标准 DHTML对象模型 window 2个角色 1 代替global作为全局作用域对象 所有全局函数和全局变量都是window的成员 2 封装所
  • ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied问题解决

    Windows Anaconda python3 6 安装依赖包发生错误如下 pip install i https pypi tuna tsinghua edu cn simple r requirements txt user ERRO
  • docker的深入浅出--3.Dockerfile介绍及保留字指令的使用run、entrypoint、onbuild、add和copy关键字以及自定义镜像

    目录 一 Dockerfile介绍 1 centos镜像来理解Dockerfile 2 docker的创建流程 二 Dockerfile的保留字指令 1 自定义centos镜像 xff08 run保留字 xff09 history指令 2
  • 通过MAVROS控制仿真无人机

    首先 xff0c 在目录中建立工作区 xff0c 并进行初始化操作 mkdir p catkin ws src cd catkin ws catkin init wstool init src rosinstall generator ro
  • Jetson nano+T265+PX4实现室内定点飞行

    目录 前言 一 MAVROS的安装 二 Realsense SDK和Realsense ROS的安装 四 给予串口权限 五 在QGC中修改PX4参数 六 启动VIO节点 七 参考文献 前言 1 硬件 飞控 xff1a Pixhawk 6C
  • ros通信之topic通信机制及基于topic的节点通信

    现在的我对于节点node和节点句柄nodehandle的粗俗的理解是 xff1a 节点 xff0c 就是一个进程 xff0c 在ros的环境中叫做节点node 在计算机的工作中叫做进程 xff0c 两者是同时的 xff0c 在ros中 xf
  • inter realsener D435 ROS驱动安装(非源码编译)

    1 安装公钥 sudo apt key adv keyserver keys gnupg net recv key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE sudo apt key adv keys
  • 斜率与倾斜角的关系

    k 61 tan 61 atan k k 斜率 倾斜角
  • NVIDIA JETSON TX2 安装扩展SATA硬盘

    安装扩展硬盘 在dash中搜素disk 进入磁盘管理工具 xff0c 可以看到我们的扩展硬盘 点击磁盘左下角设置按钮 xff0c 进入Format Partition 为硬盘起个名字 xff0c 比如JetsonSSD 250 xff0c
  • Qt——QMessageBox类详解

    QMessageBox类提供了一个模式对话框 xff0c 用于通知用户或询问用户问题并接收答案 我们先来看下QMessageBox information函数的使用 其原型 xff1a static int QMessageBox info
  • 【UWB定位】 - DWM1000模块调试简单心得 - 3

    UWB定位 DWM1000模块调试简单心得 1 UWB定位 DWM1000模块调试简单心得 2 前俩篇介绍了简单的一基站一标签TOF方式测距 xff0c 第三篇我们来搭建一个 一标签三基站 的定位demo 目的 标签与三个基站分别测距 xf
  • 51单片机——计数器与定时器的区别

    定时器和计数器是同一器件 计数器 其共同的特点是都有一个计数脉冲输入端 每输入一个脉冲 计数器就进行加1或减1计数 若计数器件的计数脉冲的频率固定 则可利用计数实现定时 这就是定时器 若计数器件的作用仅仅是记录输入脉冲的多少 则称为计数器
  • vue 中 如何修改【数组中】【对象的值】,解决步骤如下

    原创 https segmentfault com q 1010000012375354 a 1020000012377603 vue 中 如何修改 数组中 对象的值 通过数组的变异方法 xff08 Vue数组变异方法 xff09 我们可以
  • 英伟达Jetson TX2 资源贴

    NVIDIA JETSON TX2 install packages 原创博客 xff0c 欢迎转载 xff0c 请注明博客链接 xff1a 英伟达Jetson TX2 资源贴 资源汇总 jetson tx2 GPIO 解决方案汇总 Jet
  • 研究线程锁之RLock(一)

    死锁 xff1a 是指两个或两个以上的进程或线程在执行过程中 xff0c 因争夺资源而造成的一种互相等待的现象 xff0c 若无外力作用 xff0c 它们都将无法推进下去 此时称系统处于死锁状态或系统产生了死锁 xff0c 这些永远在互相等
  • 虚拟机中使用OpenGL遇到的错误总结

    由于VMware对OpenGL的支持有限 xff0c 目前最新版本的VMware workstation15 Pro只支持到OpenGL3 3的core profile xff08 核心模式 xff09 xff0c 在有条件的前提下建议安装
  • 视觉SLAM——视觉里程计解决方案分析(间接法)

    目录 基本问题 分析各类求解方案优缺点分析 基本问题 视觉里程计是视觉SLAM技术的起点 xff0c 其核心问题同SLAM技术一样 xff0c 主要是定位与构图 xff0c 但视觉里程计解决的核心是定位问题 xff0c 也就是相机的位姿 通
  • 视觉SLAM理论——位姿的理解与间接求解

    目录 xff1a 位姿的定义位姿与变换矩阵的区别与联系位姿的求解方法 位姿的定义 在SLAM中 xff0c 位姿是世界坐标系到相机坐标系的变换 xff0c 包括旋转与平移 根据以上定义可以衍生以下几个问题 xff1a 1 世界坐标系在哪 x