基于功能安全的车载计算平台开发:系统层面

2023-05-16

相对于功能安全概念阶段,系统阶段更专注于产品的详细设计,涉及系统工程、安全工程和架构设计等不同技术领域。同时,系统阶段也经常扮演着供应链上、下游功能安全的DIA交互阶段,是功能安全中非常重要且考验技术水平的阶段。

01 应用环境

车载智能计算平台,作为自动驾驶的主要部件,其应用环境参考如图。

图片

车载智能计算平台应用环境参考示意图

车载智能计算平台的应用环境主要包含用于环境感知(如摄像头、激光雷达、毫米波雷达、超声波雷达等)和位置定位(如GNSS、高精度地图等)的传感器,整车底盘域、动力域以及车身域的执行器,人机交互的HMI,以及外部互联与通信的T-Box和OBD等。随着自动驾驶等级的不断提高,车载智能计算平台对应用环境中的传感器、执行器、人机接口和外部互联通信有更高的功能要求及功能安全要求。

02 功能划分

车载智能计算平台按照功能可以分为传感器接入及管理、AI计算、通用计算、通信、存储和车控等。不同的功能依赖不同的系统模块实现。传感器接入与管理单元提供丰富的软硬件接口,使能传感器接入及管理。AI计算提供深度神经网络算法加速计算能力。通用计算主要是指面向常规算法的计算能力。车载智能计算平台内部通信提供车载智能计算平台内部各个要素之间通信能力。V2X通信提供车载智能计算平台连接车辆外部设备能力。存储功能提供诸如高精度地图存储及服务能力。车控提供车控下发能力,对接车辆执行器。

图片

车载智能计算平台功能单元参考ASIL等级

**
**

03 安全分析

系统安全分析的目的是识别功能或系统设计中存在的违背安全目标的失效(包括单点失效或异常)和相关性失效(如共因失效和级联失效)等。ISO 26262对此提及两种安全分析方法:

归纳分析(Inductive analysis):是一种以自上向下的分析方式,从已知影响结果入手逐步向下分析找到失效原因的方法;

演绎分析(Deductive analysis):是一种以自下而上的分析方式,从已知的失效原因入手推导出影响结果的方法。

演绎分析方法是针对ASIL等级为C/D的功能安全开发所使用的方法,具体常用的方法有故障树分析(FTA)、可靠框图(RBD)、系统理论与过程分析(STPA)等。归纳分析方法是针对所有ASIL等级的功能安全开发都强烈推荐使用的方法,具体常用的方法有失效模式与影响分析(FMEA)和事件树分析(ETA)等。

另外,安全分析包括定量分析与定性分析,在系统阶段的安全分析用于辅助系统设计,因此,这个阶段定性的安全分析就足够了。在系统阶段的安全分析过程中,除了上面提及的分析方法,还包括危险和可操作性分析(HAZOP)、接口安全分析(ISA)。

04 安全策略

自动驾驶功能目前的系统安全策略大体分为两种,即Fail-Safe(失效-安全)以及Fail-Operational(失效-可操作)。Fail-Safe要求系统监控关键的部件以达到失效后系统关断的目的。但是对于L3及以上的功能,驾驶员处于脱眼、脱手的状态,系统的关闭并不能保证可靠地完成驾驶权的转移。例如,高速公路场景中,车辆紧急停止在本车道是一种潜在的风险状态,很容易发生高速追尾。Fail-Operational安全策略解决了这一问题,即使在主功能系统失效的情况下,仍然有备份系统可以保证车辆进行降级操作,让车辆转移到安全区域。

**
**

05 系统设计

系统安全架构,业内常使用的是E-Gas三层监控架构。E-Gas监控概念源于奥迪、宝马、戴姆勒、保时捷、大众等成员一起通过工作组的形式开展的针对复杂车载控制系统的安全监控架构设计指导性文档,涉及系统架构、软件和硬件的设计理念,广泛应用于传统燃油车和新能源汽车监控与诊断设计领域。

E-Gas监控概念的核心是三层安全架构设计。整体设计分为Level1、Level2和Level3,其定义如下:

图片

E-Gas三层安全架构(带锁步核)

**Level1:**功能层,包括扭矩的解析、功能的诊断等,最直接的理解就是能够实现设计基本功能的软件及相关硬件资源的组合;

**Level2:**功能监控层,负责监控功能层的输出结论,简单理解来看,就是软件的冗余校验,但是,由于不想消耗太多资源及避免算法共因,所以基于功能结果的监控;

**Level3:**硬件监控层,负责确保Level1和Level2的运行的硬件环境是正常工作的,异常的运行环境会导致Level2的设计起不到很好效果,因此,Level3在整体的监控架构中作用是不可替代的。

车载智能计算平台的安全策略可以是独立的监控模块或冗余的系统设计。独立的监控模块实时监控功能实现模块的软硬件故障,一旦检测到有安全相关故障,车辆即进入安全状态,如需要可先进入紧急运行模式(Emergency Operation)。例如,功能降级、当前车道停车、安全地点停车等。

冗余的系统设计是指两个或多个功能模块互为备份。例如,车载智能计算平台可以采用“主处理单元+辅处理单元”双处理架构,以确保L3及以上自动驾驶车辆的安全。在该架构下,主处理单元对车辆的运动轨迹进行规划和控制,辅处理单元的作用是监控主处理单元。同时两个单元不断地进行交叉检查,当两个通道在规划轨迹和控制策略存在较大偏差时,系统就会进入降级模式。主处理单元和辅处理单元可以按照ASIL-B设计开发,仲裁模块可以按照ASIL-D设计开发。

在系统阶段进行设计时,需要考虑不同系统单元的故障以及对应的处理策略,具体包括传感器接入能力失效,比如丢帧、乱序等;通用计算能力或AI计算能力失效,比如代码跑飞、执行超时等;内部或V2X通信能力失效,比如超时等;存储失效,比如高精度地图数据损坏等;车控失效,比如非预期发送车控等;电源失效;时钟失效。

06 技术安全概念

技术安全概念是车载智能计算平台系统设计中安全策略与安全设计的集合。技术安全概念的内容主要包含基于系统架构的功能安全分析,基于上级功能安全要求与功能安全分析导出的技术安全要求,最终集成安全设计的系统架构,以及后续生产过程中需要采取的安全措施。技术安全要求需要定义具体的安全机制并分配到相应的架构要素中,以确保在下一级的开发过程中,安全机制可以被进一步细化与实施。在车载智能计算平台的开发过程中,技术安全概念可能针对于某一系统或子系统,因而技术安全要求涉及的架构层级可以不止一层。

功能安全概念规定了系统的安全目标,以及系统所需要的安全功能以实现这些安全目标。而技术安全概念则需要实现以下两部分内容:

①进一步细化安全概念提出的安全功能,也就是从做什么转化为怎么做,得出安全功能的实现技术方案;

②分析安全功能的实现路径,找到系统或技术方案中引起安全功能失效的单点故障、潜伏故障和多点故障,并提出安全措施或安全机制来覆盖这些故障。

具体而言,从功能安全需求(FSR,Functional Safety Requirement)/功能安全概念(FSC,Functional Safety Concept)导出到技术安全需求(TSR,Technical Safety Requirement)以及技术安全概念(TSC, Technical Safety Concept)的步骤如下:

步骤1:针对每一条FSR/FSC,详细制订该条FSR/FSC的实现技术方案,也可以理解为FSR/FSC在系统初始架构要素中的功能执行路径,从传感器→控制器→执行器的实现路径;

步骤2:FSR/FSC的实现技术方案为对象,进行FTA或FMEA分析,识别出该实现技术方案中违背该条FSR/FSC的单点故障和双点故障;

步骤3:针对单点故障,设计相应的具体诊断机制或安全措施;

步骤4:针对双点故障,设计相应的避免潜伏故障的诊断机制或安全措施;

步骤5:汇总上述技术实现方案、针对单点的诊断机制和避免潜伏的诊断机制,形成TSR;

步骤6:将导出的TSR分配到具体实现要素如硬件和软件,优化系统架构设计,即TSC;

步骤7:针对较复杂或多层系统,可重复步骤1—6过程进行迭代设计,直至完成整个系统的TSR/TSC开发。

在车载智能计算平台的技术安全要求中,若采取多层次的技术安全要求,其基本原则不变,即技术安全要求要与架构层级相映射并最终被分配到软件与硬件中,以保证软件与硬件的功能安全开发有明确和完整的输入。

07 测试验证

系统测试内容与方法从软硬件层面、系统层面与整车层面提出了要求,相应的测试内容、测试方法以及ASIL等级要求如表。

图片

系统测试内容与方法列表

车载智能计算平台在功能安全概念阶段开发或假设了上层的安全目标和功能安全要求,安全要求在之后各个阶段被逐渐细化和实现。最终完成硬件层面及软件层面开发和集成的车载智能计算平台能否正确实现安全要求,以及是否存在非预期的功能,需要通过系统层面的集成测试进行验证。系统层面的测试验证,一方面需要确保安全要求能够被正确地使能,另一方面还需要确保车载智能计算平台不会因为安全要求非预期使能而导致系统可用性降低。

制定有序的系统层面测试计划,并进行持续的过程跟踪管理,是保障车载智能计算平台测试验证工作有序可靠进行的必要途径。开发测试团队应重点考虑项目整体时间计划、测试验证的人员安排与责任分工、测试方法、测试环境、测试工具等方面的内容,综合评估和确认之后形成测试计划。

基于SEooC模式开发的车载智能计算平台实际应用到目标车型时,系统集成测试和整车集成测试是发现系统性故障不可或缺的安全活动。在系统集成测试和整车集成测试活动中,需重点验证目标车型的功能安全要求是否得到正确实现,集成真实的传感器和执行器等其他其它要素之后的系统响应是否满足安全机制的要求,车载智能计算平台与目标车型其他要素之间的接口与交互过程是否正确,以及安全要求在外界严苛的环境条件和运行工况下能否正常实现。

08 系统开发常用工具介绍

依据ISO26262的要求,为实现系统设计满足如图所示的原则,一般可使用半形式化如SysML语言+自然语言实现。行业内用得比较多的、支持系统设计的工具有Medini Analyze、IBM Rhapsody和Enterprise architect等。Medini Analyze与ISO 26262要求更加契合,IBM Rhapsody和Enterprise architect的系统工程建模则更加强大。

图片

系统设计原则

a、Medini Analyze

Medini Analyze是Ansys公司开发的一款支持ISO26262开发活动的工具,它提供一系列绑定在模型化环境中的先进分析方法,包括:

  • 针对电子电气系统和软件控制功能的安全分析和设计,以及适用于ISO26262、IEC61508、ARP4761和MIL-STD-882E的特定模板;
  • 将架构/功能设计与质量、可靠性和功能安全分析方法进行集成;
  • 可支持运行情境分析、危险与风险分析(HARA)、功能性风险评估(FHA)、FTA、FMEA、FMEDA、FMECA概率可靠性分析以及硬件失效指标;
  • 依照SAEJ1739、VDA质量手册、AIAG等标准进行产品设计及相关流程的质量分析;
  • 完整的端到端可追溯功能;
  • 工作成果和文档的定制化生成;
  • 团队协作支持,包含模型化高级对比和合并技术;
  • 集成Ansys SCADE Architect、IBM Rational DOORS、IBM Rational Rhapsody、Enterprise Architect、MATLAB/Simulink、State flow、PTC Integrity、Microsoft Office、Tortoise SVN、IBM Rational ClearCase、Jama Software等工具。

图片

Medini Analyze驱动集成安全分析

b、IBM Rhapsody

IBM Rhapsody是IBM公司基于UML/SysML的模型驱动开发集成环境,用于嵌入式和实时系统的系统设计开发工具。Rhapsody的主要功能如下:

  • 使用行业标准建模语言:UML、SysML、DoDAF等;
  • 支持可视化模型仿真;
  • 支持C、C++、Java等语言开发环境,做到模型平台无关性;
  • 支持常用的嵌入式实时操作系统,如VxWorks、嵌入式Linux、Android、OSEK、QNX等;
  • 基于Jazz平台与DOORS、RTC、RQM无缝集成。

c、Enterprise architect

Enterprise architect是Sparx Systems公司的旗舰产品。它覆盖了系统开发的整个周期,除了开发类模型之外,还包括事务进程分析、使用案例需求、动态模型、组件和布局、系统管理、非功能需求、用户界面设计、测试和维护等。该工具特点:

  • 高价值、端到端的建模,支持软件和系统工程的完整的建模生命周期;
  • 建模、管理和跟踪需求;
  • 强大的文档生成能力;
  • 源代码的生成和反向工程;
  • 先进的模型驱动架构,包括C#、DDL、EJB、Java、Junit、NUnit、WSDL、XSD的建模转化;
  • 支持SysML系统工程和仿真;
  • 业务流程建模;
  • 基于UML2.4.1语言;
  • 高效的项目管理;
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

基于功能安全的车载计算平台开发:系统层面 的相关文章

  • QT开发网络调试助手项目总结

    之前整理了一些使用QT开发串口调试助手的项目 博客地址 xff1a 上位机总结 这次继续整理一些使用QT开发网络调试助手的项目 Qt开源作品41 网络调试助手增强版V2022 我的QT学习之路 xff0c 编写UDP 43 tcp网络调试助
  • QT开源项目总结-总有一款适合你

    Qt Open Source Project 开源项目推荐 xff1a 本人收集的有关Qt的GitHub Gitee开源项目 精品收藏 我的Qt作品 Github上的一些高分Qt开源项目 Qt编写项目作品大全 Qt 开源作品
  • Qt 打印调试信息-怎样获取QTableWidget的行数和列数-读取QTableWidget表格中的数据

    文章目录 Qt 打印调试信息怎样获取QTableWidget的行数和列数Qt怎么把QTableWidget表格中的数据读取出来 Qt 打印调试信息 打印当前目录代码如下 xff0c 别忘了头文件 include include lt QtD
  • VR游戏交互开发的一些体验

    VR游戏交互开发的一些体验 本文主要写Unity开发手游过程中VR交互输入控制的一些浅薄的经验交互方面 xff0c 头控和视线按钮依然较为主流 xff0c 可以获得传感器数据来获得输入除了实体按钮输入之外还可以探索其他交互方式 xff0c
  • 一篇文章快速搞懂Qt文件读写操作

    已剪辑自 https www cnblogs com jfzhu p 13546886 html 导读 xff1a Qt当中使用QFile类对文件进行读写操作 xff0c 对文本文件也可以与QTextStream一起使用 xff0c 这样读
  • 完整的PRD文档包含哪些内容?

    完整的PRD文档包含哪些内容 xff1f 千万 xff0c 千万 xff0c 千万别再套模板写需求文档了 xff0c 要想写好需求文档重要的不是包含哪些内容 xff0c 而是为什么包含这些内容 xff01 话不多说 xff0c 直接上干货
  • 分享一个开源的QT的串口示波器

    已剪辑自 https mp weixin qq com s XHELtvZ Wk2hNzsWD52D1w 直接来源 果果小师弟 逛github时看到这个QT的串口示波器 xff0c 完全开源 xff0c 支持串口 TCP 波形显示 通信协议
  • C 语言函数返回值,竟也有潜规则~

    已剪辑自 https mp weixin qq com s WNHx1zhna8iGaYIj6 3 fg 基本上 xff0c 没有人会将大段的C语言代码全部塞入 main 函数 更好的做法是按照复用率高 耦合性低的原则 xff0c 尽可能的
  • 模型在物理学发展中的作用

    已剪辑自 https mp weixin qq com s txS CQAIXPtY6kb2tHukUQ 模型是物理学认识由唯象理论过渡到动力学理论重要的环节 开普勒的行星运行模型 气体的分子运动模型 爱因斯坦的光子模型 卢瑟福 玻尔的原子
  • 第一性原理谈安全性和可靠性

    已剪辑自 https mp weixin qq com s jttd dhv9PmNu25Z zyd5Q 最近从各个行业对系统的安全性的关注度越来越高 xff0c 10月28日 xff0c 工信部公开征求的 道路机动车辆生产准入许可管理条例
  • 在浏览器地址栏输入一个URL后回车,背后会进行哪些技术步骤?

    转载于 xff1a 小林的图解网络系列 关键是要有个上帝视角 xff0c 先要有个网络模型的概念 xff0c 也就是TCP IP 四层网络模型 xff0c 然后针对每一层的协议进行深入 学习计算机网络一定要抓主一个点 xff0c 就是 输入
  • 在MacOS上实现两个网络调试助手的UDP通信测试

    文章目录 一 背景二 网络调试助手软件三 UDP通信过程 一 背景 因为有一个项目要中会使用本机中两个应用程序之间的UDP通信 因此本文记录一下怎么在MacOS上实现两个网络调试助手的UDP通信测试 二 网络调试助手软件 我使用的网络调试助
  • QT和网络调试助手之间的UDP通信

    文章目录 一 背景二 实现过程简述UDP协议工作原理及编程模型UDP 接收端UDP 发送端运行UDP接收端和发送端运行UDP发送端发送数据给网络调试助手 一 背景 之前一篇博客实现了两个网络调试助手之间的UDP通信 文章链接 xff1a 在
  • 一个开源且完全自主开发的国产网络协议栈

    已剪辑自 https mp weixin qq com s 1LE7mGc9mRuajRgNsyirQ onps是一个开源且完全自主开发的国产网络协议栈 xff0c 适用于资源受限的单片机系统 xff0c 提供完整地ethernet ppp
  • PyQt的使用

    使用conda切换到python3 如果不会使用conda xff0c 那么安装anaconda后打开navigator xff0c 再environments中选择创建好的python3环境 xff0c 右键打开terminal即可 安装
  • 前后台系统及嵌入式前后台模式实时性优化

    一 前后台系统 前后台系统 xff0c 即计算机前后台系统 xff0c 早期的嵌入式系统中没有操作系统的概念 xff0c 程序员编写嵌入式程序通常直接面对裸机及裸设备 xff0c 在这种情况下 xff0c 通常把嵌入式程序分成两部分 xff
  • 又一嵌入式开源仿真器

    已剪辑自 https mp weixin qq com s X0I3EotJ8TRqLK8vb8iQvA 同QEMU类似 xff0c Renode也是嵌入式相关的一个模拟器 Renode 针对物联网应用 xff0c QEMU 针对 PC 模
  • SkyEye天目全数字实时仿真软件功能介绍

    文章目录 SkyEye的概念和应用 SkyEye的优势 SkyEye可与第三方语言或者模型集成 基于可视化图形的硬件建模 容器化的仿真平台 FPGA协同仿真 SkyEye的应用案例 SkyEye大规模航电系统仿真案例 SkyEye 飞行器显
  • SkyEye——如何实现1553B总线仿真?

    已剪辑自 https www digiproto com news 204 html 1553B最初是美国军方专为飞机上设备制定的一种信息传输总线标准 xff0c 具有双向传输的特性 xff0c 实时性和可靠性高 xff0c 现已广泛应用于
  • 细数SkyEye异构仿真的5大特色

    已剪辑自 https www digiproto com news 65 html 航天飞行器使用仿真器的重要性 航天飞行器如卫星 载人飞船等需要在空中运行很长的时间 xff0c 如果出现问题回收再调试可能要历时几个月 xff0c 而且不得

随机推荐

  • SkyEye:航空发动机控制系统仿真

    已剪辑自 https www digiproto com news 212 html 航空发动机 xff08 aero engine xff09 是一种高度复杂和精密的热力机械 xff0c 作为飞机的心脏 xff0c 不仅是飞机飞行的动力
  • 基于功能安全的车载计算平台开发:软件层面

    已剪辑自 https mp weixin qq com s SIBvH8u vCk6W28KrPBmA 车载智能计算平台作为智能汽车的安全关键系统 xff0c 软件层面的安全性至关重要 由于车载智能计算平台功能丰富 xff0c 应用场景复杂
  • 软件和硬件中的调用

    文章目录 1 概述 2 1 程序进程内的调用 xff1a 函数调用 2 2 程序进程间的调用 xff1a IPC 2 3 远程程序调用 xff1a RPC 2 4 远程调用REST 3 硬件 调用 3 1 综述 总线模型 3 2 片内的总线
  • 软件和硬件之间的数据交互接口

    已剪辑自 链接 编者按 软件和硬件 xff0c 既相互依存又需要某种程度上的相互独立 通过软件和硬件之间的接口把两者连接在一起 软硬件接口 xff0c 有很多含义 xff1a 比如指令集是CPU软件和硬件之间的接口 xff1b 比如一些硬件
  • 硬件定义软件?还是,软件定义硬件?

    文章目录 1 软件和硬件 1 1 软件和硬件的定义 1 2 硬件定义软件 和 软件定义硬件 的定义 1 3 CPU xff0c 软件和硬件解耦 1 4 CPU的软硬件定义 2 硬件定义软件 2 1 系统从软件逐步到硬件 2 2 硬件架构决定
  • Matlab下多径衰落信道的仿真

    衰落信道参数包括多径扩展和多普勒扩展 时不变的多径扩展相当于一个延时抽头滤波器 xff0c 而多普勒扩展要注意多普勒功率谱密度 xff0c 通常使用Jakes功率谱 高斯 均匀功率谱 多径衰落信道由单径信道叠加而成 xff0c 而单径信道中
  • 硬件接口和软件接口

    文章目录 硬件接口IDESCSISATA光纤通道游戏设备RAID卡USBMD设备MP3视频音频 软件接口Java里的接口面向对象的接口 聊聊软件接口1 什么是接口2 诞生3 早期 xff08 1950 1970 xff09 4 快速发展 x
  • 有关C语言,定时器,周期任务的一些文章汇总

    测试C语言中打印一句 hello world需要耗费多少时间 C C 43 43 开源库 适合嵌入式的定时器调度器 C语言实现的多线程定时器 C语言操作时间函数 xff0c 实现定时执行某个任务小程序 C语言实现任务调度与定时器 Linux
  • SCADE简单了解

    随着新能源三电 智能驾驶等新技术的应用 xff0c 汽车中衍生出很多的安全零部件 xff0c 如BMS VCU MCU ADAS等 xff0c 相应的软件在汽车中的比重越来越大 xff0c 随之而来的安全性 可靠性要求也越来越高 ANSYS
  • 冯诺依曼体系结构与操作系统

    文章目录 详解冯诺依曼体系结构与操作系统前言1 简要背景介绍2 五大部件介绍3 细节解释4 举例理解冯诺依曼机中数据走向 二 全面认识操作系统1 操作系统的概念2 计算机系统 比对 银行系统3 深入认识 管理 xff1a 5 操作系统存在的
  • ADAS系统安全架构设计及安全等级的分解

    已剪辑自 https mp weixin qq com s PaFQDUR iOnEeueYQ82m w 笔者从事功能安全领域工作八年有余 xff0c 结合个人经验分享一下对系统安全架构设计的理解 xff0c 希望能够解决部分同行对于安全架
  • 汽车电子电气架构演进驱动主机厂多重变化

    已剪辑自 https mp weixin qq com s P56MaFODVc eZ4JEOVJvfA 汽车电子电气架构 xff08 EEA xff0c Electrical Electronic Architecture xff09 把
  • 编写可移植C/C++程序的要点

    以前做过两年C C 43 43 程序移植工作 xff0c 从Win32平台移植到Linux平台 大约有上百万行C C 43 43 代码 xff0c 历时一年多 在开发Win32版本时 xff0c 已经强调了程序的可植性 xff0c 无奈Wi
  • 智能座舱域控制器技术发展趋势分析

    已剪辑自 https mp weixin qq com s ajmpg7ThTUBerLvb2Bng9g 提到座舱域控制器用的主控SoC芯片 xff0c 大家第一个会想到应该就是高通的SA8155P 目前 xff0c 在主机厂新上市的中高端
  • 一个单片机驱动LCD编程思路

    文章目录 LCD种类概述TFT lcdCOG lcdOLED lcd 硬件场景预备知识面向对象驱动与设备分离 LCD到底是什么LCD驱动框架代码分析GUI和LCD层驱动IC层接口层总体流程 用法和好处字库声明 已剪辑自 https mp w
  • TinyFlashDB:一种超轻量的可纠错的通用单片机Flash存储方案

    文章目录 一 TinyFlashDB设计理念二 TinyFlashDB使用示例三 TinyFlashDB API介绍四 TinyFlashDB设计原理五 TinyFlashDB移植和配置六 移植到STM32单片机 已剪辑自 https mp
  • VR游戏交互开发的一些体验

    VR游戏交互开发的一些体验 本文主要写Unity开发手游过程中VR交互输入控制的一些浅薄的经验交互方面 xff0c 头控和视线按钮依然较为主流 xff0c 可以获得传感器数据来获得输入除了实体按钮输入之外还可以探索其他交互方式 xff0c
  • FTP、FTPS和SFTP的简介与区别

    FTP FTPS和SFTP的简介与区别 参考链接 xff1a https blog csdn net Mr Fan97 article details 119539189 FTP FTPS和SFTP简介 FTP FTP 即 文件传输协议 x
  • 基于功能安全的车载计算平台开发:硬件层面

    作为车载智能计算平台功能软件与系统软件的载体 xff0c 硬件的失效可能直接导致功能软件输出不可信任的结果 xff0c 从而违背安全目标 由于硬件故障在硬件生命周期中发生时间的随机性 xff0c 在通过改善流程降低系统性失效的同时 xff0
  • 基于功能安全的车载计算平台开发:系统层面

    相对于功能安全概念阶段 xff0c 系统阶段更专注于产品的详细设计 xff0c 涉及系统工程 安全工程和架构设计等不同技术领域 同时 xff0c 系统阶段也经常扮演着供应链上 下游功能安全的DIA交互阶段 xff0c 是功能安全中非常重要且