MII、RMII、GMII接口的详细介绍

2023-05-16

概述:    

    MII (Media Independent Interface(介质无关接口)或称为媒体独立接口,它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口和一个MAC和PHY之间的管理接口。

    数据接口包括分别用于发送器和接收器的两条独立信道,每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号。

    管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。MII (Management interface)只有两条信号线。
    MII标准接口用于连接Fast Ethernet MAC-block与PHY。表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。在其他速率下工作的与MII等效的接口有:AUI(10M 以太网)、GMII(Gigabit 以太网)和XAUI(10-Gigabit 以太网)。
MII总线
    在IEEE802.3中规定的MII总线是一种用于将不同类型的PHY与相同网络控制器(MAC)相连接的通用总线。网络控制器可以用同样的硬件接口与任何PHY进行连接。


MII相关接口介绍:
    以太网媒体接口有:MII RMII SMII GMII
    所有的这些接口都从MII而来,MII是(Medium Independent Interface)的意思,是指不用考虑媒体是铜轴、光纤、电缆等,因为这些媒体处理的相关工作都有PHY或者叫做MAC的芯片完成。
    MII支持10兆和100兆的操作,一个接口由14根线组成,它的支持还是比较灵活的,但是有一个缺点是因为它一个端口用的信号线太多,如果一个8端口的交换机要用到112根线,16端口就要用到224根线,到32端口的话就要用到448根线,一般按照这个接口做交换机,是不太现实的,所以现代的交换机的制作都会用到其它的一些从MII简化出来的标准,比如RMII、SMII、GMII等。
    RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线,所以它一般要求是50兆的总线时钟。RMII一般用在多端口的交换机,它不是每个端口安排收、发两个时钟,而是所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目。RMII的一个端口要求7个数据线,比MII少了一倍,所以交换机能够接入多一倍数据的端口。和MII一样,RMII支持10兆和100兆的总线接口速度。
    SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思。因为它只用一根信号线传送发送数据,一根信号线传输接受数据,所以在时钟上为了满足100的需求,它的时钟频率很高,达到了125兆,为什么用125兆,是因为数据线里面会传送一些控制信息。SMII一个端口仅用4根信号线完成100信号的传输,比起RMII差不多又少了一倍的信号线。SMII在工业界的支持力度是很高的。同理,所有端口的数据收发都公用同一个外部的125M时钟。
    GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。


MII工作原理:
    “媒体独立”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。
    MII数据接口总共需要16个信号,包括TX_ER,TXD,TX_EN,TX_CLK,COL,RXD,RX_EX,RX_CLK,CRS,RX_DV等。
    MII以4位半字节方式传送数据双向传输,时钟速率25MHz。其工作速率可达100Mb/s。
    MII管理接口是个双信号接口,一个是时钟信号,另一个是数据信号。
通过管理接口,上层能监视和控制PHY,其管理是使用SMI(Serial Management Interface)总线通过读写PHY的寄存器来完成的。
    PHY里面的部分寄存器是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。
    当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。
    不论是物理连接的MII总线和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。
    PHY是物理接口收发器,它实现物理层。包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。100BaseTX采用4B/5B编码。
    PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。
    PHY还有个重要的功能就是实现CSMA/CD的部分功能。
    它可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去。如果两个碰巧同时送出了数据,那样必将造成冲突,这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据。这个随机时间很有讲究的,并不是一个常数,在不同的时刻计算出来的随机时间都是不同的,而且有多重算法来应付出现概率很低的同两台主机之间的第二次冲突。
    通信速率通过双方协商,协商的结果是两个设备中能同时支持的最大速度和最好的双工模式,这个技术被称为Auto Negotiation或者NWAY。
    隔离变压器把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。
    RJ-45中1、2是传送数据的,3、6是接收数据的。
    新的PHY支持AUTO MDI-X功能,也需要隔离变压器支持,它可以实现RJ-45接口的1、2上的传送信号线和3、6上的接收信号线的功能自动互相交换。


GMII简介:
    GMII (Gigabit MII)
    GMII采用8位接口数据,工作时钟125MHz,因此传输速率可达1000Mbps。同时兼容MII所规定的10/100 Mbps工作方式。
    GMII接口数据结构符合IEEE以太网标准。该接口定义见IEEE 802.3-2000。
    发送器:
    ◇ GTXCLK——吉比特TX..信号的时钟信号(125MHz)
    ◇ TXCLK——10/100M信号时钟
    ◇ TXD[7..0]——被发送数据
    ◇ TXEN——发送器使能信号
    ◇ TXER——发送器错误(用于破坏一个数据包)
    注:在千兆速率下,向PHY提供GTXCLK信号,TXD、TXEN、TXER信号与此时钟信号同步。否则,在10/100M速率下,PHY提供 TXCLK时钟信号,其它信号与此信号同步。其工作频率为25MHz(100M网络)或2.5MHz(10M网络)。
    接收器:
    ◇ RXCLK——接收时钟信号(从收到的数据中提取,因此与GTXCLK无关联)
    ◇ RXD[7..0]——接收数据
    ◇ RXDV——接收数据有效指示
    ◇ RXER——接收数据出错指示
    ◇ COL——冲突检测(仅用于半双工状态)
    管理配置
    ◇ MDC——配置接口时钟
    ◇ MDIO——配置接口I/O
    管理配置接口控制PHY的特性。该接口有32个寄存器地址,每个地址16位。其中前16个已经在“IEEE 802.3,2000-22.2.4 Management Functions”中规定了用途,其余的则由各器件自己指定。

 

RMII简介:
    RMII: Reduced Media Independant Interface 即简化媒体独立接口;是标准的以太网接口之一,比MII有更少的I/O传输。
    关于RMII口和MII口的问题
    RMII口是用两根线来传输数据的,
    MII口是用4根线来传输数据的,
    GMII是用8根线来传输数据的。
    MII/RMII只是一种接口,对于10M线速,MII的速率是2.5M,RMII则是5M;对于100M线速,MII的速率是25M,RMII则是50M。
    MII/RMII 用于传输以太网包,在MII/RMII接口是4/2bit的,在以太网的PHY里需要做串并转换、编解码等才能在双绞线和光纤上进行传输,其帧格式遵循IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN)。
    以太网帧的格式为:前导符+开始位+目的mac地址+源mac地址+类型/长度+数据+padding(optional)+32bitCRC
    如果有vlan,则要在类型/长度后面加上2个字节的vlan tag,其中12bit来表示vlan id,另外4bit表示数据的优先级! 

 

网卡的工作原理,MAC和PHY:

认识网卡,我们上网必备组件之一。    

    网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。

    下面继续让我们来关心一下PHY和MAC之间是如何传送数据和相互沟通的。通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface)界面通过读写PHY的寄存器来完成的。PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。我们看到了,不论是物理连接的MII界面和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。一片网卡主要功能的实现就基本上是上面这些器件了。其他的,还有一颗EEPROM芯片,通常是一颗93C46。里面记录了网卡芯片的供应商ID、子系统供应商ID、网卡的MAC地址、网卡的一些配置,如SMI总线上PHY的地址,BOOTROM的容量,是否启用BOOTROM引导系统等东西。很多网卡上还有BOOTROM这个东西。它是用于无盘工作站引导操作系统的。既然无盘,一些引导用必需用到的程序和协议栈就放到里面了,例如RPL、PXE等。实际上它就是一个标准的PCI ROM。所以才会有一些硬盘写保护卡可以通过烧写网卡的BootRom来实现。其实PCI设备的ROM是可以放到主板BIOS里面的。启动电脑的时候一样可以检测到这个ROM并且正确识别它是什么设备的。AGP在配置上和PCI很多地方一样,所以很多显卡的BIOS也可以放到主板BIOS里面。这就是为什么板载的网卡我们从来没有看到过BOOTROM的原因。

    2。工作过程, PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则(10Based-T的NRZ编码或100based-T的曼彻斯特编码)把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。现在来了解PHY的输出后面部分。一颗CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(这取决于芯片的制程和设计需求),但是这样的信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网现直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏。 再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A传到B,由于A设备的0V电平和B点的0V电平不一样,这样会导致很大的电流从电势高的设备流向电势低的设备。我们如何解决这个问题呢?这时就出现了Transformer(隔离变压器)这个器件。它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据。隔离变压器本身就是设计为耐2KV~3KV的电压的。也起到了防雷感应(我个人认为这里用防雷击不合适)保护的作用。有些朋友的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是隔离变压器起到了保护作用。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

MII、RMII、GMII接口的详细介绍 的相关文章

  • 无需修改bios即可让任意主板实现NVME启动

    使用Clover四叶草引导加载NVMe驱动 除了对BIOS的硬改之外 xff0c 还有一种更安全的软件方案 xff1a 使用Clover四叶草引导加载NVMe驱动 Clover是著名的黑苹果引导软件 xff0c 这里借用它来实现对预引导 x
  • 如何将PX4 User Guide导出为PDF

    PX4 Autopilot User Guide PDF导出 如何将PX4 User Guide导出为PDF1 工具安装安装nodejs安装ebook conver安装svgexport安装gitbook 2 输出PX4 Guide文档下载
  • CentOS7 yum安装docker失败的看过来

    背景 在百度上搜到一些前辈关于安装docker教程 xff0c 例如 xff1a 点击打开链接 但都报出找不到源的信息 xff0c 估计导致该情况往往是国内使用外国源被和谐的原因吧 解决 1 使用阿里云的yum源 cd etc yum re
  • 持续交付(CD)与持续集成(CI)

    测试基础设施是指支持自动化测试运行 测试开发 测试管理以及与研发环境集成的综合性平台 敏捷测试离不开稳定 高效 准确的基础设施 xff0c 以满足对于持续测试 持续反馈的需要 xff1b 同时 xff0c 持续集成 持续交付和 DevOps
  • 树莓派c语言串口通讯程序

    在网上搜了很多关于树莓派串口通讯的例子 xff0c 但是都是用python写的 xff0c 虽然python很有名 xff0c 而且最近也在学习这门语言 xff0c 但是还是想用c语言实现一下 xff0c 因为需要用到整套系统里 xff0c
  • 怎么阅读论文,写心得体会

    收集资料 xff1a 阅读学术论文的心得体会 xff01 如何阅读学术论文 和上一篇类似大牛写论文的心得几年的写论文和审稿心得 文献阅读心得体会格式 xff1a 1 看论文题目 xff0c 做出论文类别判别 新理论 新方法 解决新问题 最高
  • 了解什么是枚举(enumeration)

    1 枚举是一组常量的集合 还可以看成包含有限特定的对象 2 自定义枚举的步骤 xff1a 将构造器私有化private将get方法拿掉在类的内部直接创建固定的对象 xff0c 比如 xff1a public static Season SP
  • python学习三十八-九天(python程序中进程的操作)

    主要内容 python的multiprocess模块和用法 在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识 xff0c 了解进程是什么应该不再困难了 xff0c 刚刚我们已经了解了 xff0c 运行中的程序就是一个
  • 电脑开机安装流氓软件、弹广告处理办法

    今天处理了一台开机自动安装流氓软件的电脑 xff0c 而且还弹广告 现在写下处理过程 文章目录 一 卸载软件 xff08 1 xff09 控制面板卸载 xff08 2 xff09 安装路径卸载 二 禁用任务计划程序三 删除软件安装包四 修改
  • VScode中使用git进行版本控制

    VScode中使用git进行版本控制 一 安装与配置二 初始化和提交本地仓库三 提交到远程仓库四 克隆和拉取1 克隆2 拉取 五 修改后的提交六 免密提交七 其他命令1 撤销2 Git 分支命令3 暂时保存更改4 同时提交多个仓库 一 安装
  • SLAM的前世今生 终于有人说清楚了

    SLAM的前世今生 终于有人说清楚了 硬创公开课 from xff1a http www leiphone com news 201605 5etiwlnkWnx7x0zb html 2016 05 16 19 40 宗仁 0 条评论 今年
  • 使用catkin进行工程管理

    catkin是什么 这是一个管理ros代码的工程管理工具 xff0c 基于cmake xff0c 但是比cmake多更多功能 xff0c 是cmake上层的代码管理规则 ros之前采用的是ros build xff0c 现在用catkin
  • ROS-melodic 安装 及:rosdep init 和 rosdep update 失败问题解决总结

    正常安装ros流程 ros 安装 melodic sudo sh c 39 etc lsb release amp amp echo 34 deb http mirrors tuna tsinghua edu cn ros ubuntu D
  • ubuntu 安装Opencv4版本后安装Opencv3,并在项目中区分使用

    安装 xff1a ubuntu 安装OpenCV3版本后安装OpenCV4 xff0c 且多版本共存 wyyang2的博客 CSDN博客 https blog csdn net wyyang2 article details 1039894
  • Ubuntu 16.04录屏软件

    Ubuntu 16 04安装录屏软件Simple Screen Recorder https www maartenbaert be simplescreenrecorder https jingyan baidu com article
  • debug时一个非常坑爹的问题——单步调试正常但是运行没结果

    单步调试能得到正确答案 xff0c 运行不出来 本人用的是codeblocks xff0c 20 03版本 话说有一天晚上 xff0c 那个不平凡的夜 xff0c 还有不到十个小时数据结构的实验课就要上交报告了 xff0c 而自己的程序却出
  • DataX使用、同步MySQL数据到HDFS案例

    文章目录 4 DataX使用4 1 DataX使用概述4 1 1 DataX任务提交命令4 1 2 DataX配置文件格式 4 2 同步MySQL数据到HDFS案例4 2 1 MySQLReader之TableMode4 2 1 1 编写配

随机推荐

  • 支持期限提至10年,Ubuntu 18.04 LTS

    给技术最前线加星标 xff0c 每天看技术热点 综合自 xff1a cnBeta COM Solidot Mark Shuttleworth宣布将支持Ubuntu 18 04 LTS长达十年时间 xff0c 让LTS版本的含金量更足 xff
  • 实训第五天:我的页面布局,API接口(一言,天气预报)

    1 不用不用脚本和弹窗获取手机信息 xff0c 用微信公众平台的组件开发能力 open data用于展示微信开放的数据 部分代码 xff1a lt view class 61 34 container 34 gt lt view class
  • 这是一个失败的程序员

    写程序至今 xff0c 未入门 xff0c 什么都不懂 xff01
  • adb dumpsys命令用法

    dumpsys命令功能很强大 xff0c 能dump系统服务的各种状态 xff0c 非常有必要熟悉该命令的用法以及含义 一 概述 1 1 dumpsys命令用法 可通过dumpsys命令查询系统服务的运行状态 对象的成员变量属性值 xff0
  • matlab subs函数

    在matlab命令行查看subs函数的帮助 subs函数一共有三种使用方法 xff1a subs s old new subs s new subs s 点击 subs 的参考页可以看到下面的详细说明 第一种使用方法 说明 xff1a su
  • Docker----如何更改docker镜像的存储路径

    原文链接 Docker 如何更改docker镜像的存储路径 背景 随着docker容器已经镜像的使用 xff0c docker镜像占用大量磁盘空间 xff0c 当然可以通过不断的删除镜像或者设置定时任务删除镜像 xff0c 但是有时候还是挺
  • ROS的geometry_msgs/PoseWithCovarianceStamped Message 消息格式

    溪西创客小屋 geometry msgs PoseWithCovarianceStamped Message Raw Message Definition This expresses an estimated pose with a re
  • 线程和进程的理解

    一 介绍线程和进程 什么是线程 是程序执行的最小单位 xff0c 一个进程在执行过程中产生建多个线程 xff0c 同一进程中的 多个 线程共享同一块内存空间及系统资源 xff0c 线程数进程的一部分 xff0c 因此线程数也被称为轻量级进程
  • Windows安装tensorflow-gpu

    0 想在Windows环境安装tensorflow gpu xff0c 显卡必须是N卡 xff08 本文以3070显卡为例进行说明 xff09 1 安装好Anaconda以及Pycharm xff08 安装教程 xff1a https ww
  • 16.进程-进程间通信概述

    进程间通信 xff0c 也就是大家常说的 IPC Inter Process Communication xff0c 指的是不同的进程间进行交流 xff0c 本质上就是进程之间发送和接收数据 xff1b 本质上 xff0c 信号也是属于进程
  • PNP问题-位姿估计方法梳理(pose estimation)

    tags 单目视觉 位姿测量 目标3D精确模型已知 xff08 建立2D 3D对应关系 xff09 xff1a 点特征 P3P问题 基于针孔成像模型 Gao的方法 xff08 opencv emgucv xff09 Kneip 的 P3P
  • 室内无人机定位导航

    个人观点 xff1a 可研究的方向 1 静态规划方面 xff1a 将控制与定位结合起来 xff1b 修正回环检测误差 xff0c 提高算法的计算精度和执行效率 xff1b 2 动态规划方面 xff1a 用神经网络识别运动物体的行进方向 xf
  • 树莓派3b程序控制无人机 (一)——电脑连树莓派

    设备 xff1a 树莓派3b xff08 备有键盘 xff0c 鼠标 xff09 xff1b win10 x64笔记本 xff1b UAV pixhawk飞控板 etc network interfaces 的设置可参考以下链接 xff1a
  • 三星6410裸机程序开发

    网上关于S3C6410裸机程序开发都是基于RealView RVDS 也有一些是基于eclipse的 xff0c 但都没有详细介绍在eclipse中如何建立S3C6410裸机程序工程 尽管友善之臂提供的6410裸机程序示例使用了eclips
  • linux socket can程序cantool

    最近写了个自认为不错的基于linux socket can程序 xff0c 主要功能 xff1a 程序具备全部CAN功能 xff0c 包括CAN标准帧 扩展帧接收与发送 CAN总线错误判断 环回等功能适用基于LINUX SOCKET机制实现
  • Linux CAN编程详解

    Linux CAN编程详解 是一篇百度文库上的文档 xff0c 主要描述了以下内容 xff1a can总线介绍及其帧类型 xff1b Linux 系统中CAN 接口配置 xff1b Linux 系统中CAN 接口应用程序开发 xff1b L
  • c++中冒号(:)和双冒号(::)的用法和c/c++ 位域结构体

    1 冒号 xff08 xff09 用法 xff08 1 xff09 表示结构体内 位域的定义 xff08 即该变量占几个bit空间 xff09 typedef struct XXX unsigned char a 4 unsigned ch
  • CAN总线与RS485的比较

    最近一个项目总体方案设计为分布式系统 xff0c 于是在通讯上纠结于CAN总线还是RS485 因此在网上搜索一些了一些关于RS485和CAN总线的资料 xff0c 除进一步认识RS485通讯特点外 xff0c 认识了CAN总线的特点及其与R
  • Linux内核中常见内存分配函数

    1 原理说明 Linux 内核中采 用了一种同时适用于32 位和64 位系统的内 存分页模型 xff0c 对于32 位系统来说 xff0c 两级页表足够用了 xff0c 而在x86 64 系 统中 xff0c 用到了四级页表 xff0c 如
  • MII、RMII、GMII接口的详细介绍

    概述 xff1a MII Media Independent Interface 介质无关接口 或称为媒体独立接口 xff0c 它是IEEE 802 3定义的以太网行业标准 它包括一个数据接口和一个MAC和PHY之间的管理接口 数据接口包括