深度相机(3D相机)

2023-05-16

二维图片,人眼可以通过物体的相对位置关系判断物体距离的远近,而相机则不可以。

深度相机(3D相机)就是终端和机器人的眼睛,其就是通过该相机能检测出拍摄空间的景深距离。通过深度相机获取到图像中每个点距离摄像头的距离,在加上该点在 2D 图像中的二维坐标,就能获取图像中每个点的三维空间坐标。

 

结构光(Structured-light)

       其原理是基本原理是,通过近红外激光器,将具有一定结构特征的光线投射到被拍摄物体上,再由专门的红外摄像头进行采集这种具备一定结构的光线( 根据编码图案不同一般有条纹结构光enshape ,编码结构光Mantis Vision, Realsense(F200), 散斑结构光apple(primesense)),会因被摄物体的不同深度区域,而采集反射的结构光图案的信息,然后通过运算单元将这种结构的变化换算成深度信息,以此来获得三维结构。

简单来说就是,通常采用特定波长的不可见的红外激光作为光源,它发射出来的光经过 一定的编码投影在物体上,通过一定算法计算返回的编码图案的畸变来得到物体的位置和深度信息。

结构光深度相机的分类:主要分为单目结构光和双目结构光相机。

       单目结构光容易受光照的影响,在室外环境下,如果是晴天,激光器发出的编码光斑容易太阳光淹没掉。

        双目结构光可以在室内环境下使用结构光测量深度信息,在室外光照导致结构光失效的情况下转为纯双目的方式,其抗环境干扰能力、可靠性更强,深度图质量有更大提升空间。

        此外,结构光方案中的激光器寿命较短,难以满足7*24小时的长时间工作要求,其长时间连续工作很容易损坏。因为单目镜头和激光器需要进行精确的标定,一旦损坏,替换激光器时重新进行两者的标定是非常困难的。

由于结构光主动投射编码光,因而适合在光照不足(甚至无光)、缺乏纹理的场景使用。

3D结构光目前的使用场景为:

第一,物体信息分割与识别,3D人脸识别,用于安全验证、金融支付等场景;

第二,体感手势识别,为智能终端提供新的交互方式;

第三,三维场景重建,利用深度相机生成的深度信息(点云数据),结合RGB彩色图像信息,可完成对三维场景的还原,可用于测距,虚拟装修等场景。

例子:

        iPhone-X上的True-depth相机,这种是散斑结构光方案,通过投射人眼不可见的伪随机散斑红外光点到物体上,每个伪随机散斑光点和它周围一定范围内的点集在空间分布中的每个位置都是唯一的,并将预先进行了存储。这些散斑投影在被观察物体上的大小和形状根据物体和相机的距离和方向而不同,由此计算深度信息。

双目视觉(Stereo-vision)

基于视差原理并利用成像设备 从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息。

 RGB双目相机因为非常依赖纯图像特征匹配,所以在光照较暗或者过度曝光的情况下效果都非常差,另外如果被测场景本身缺乏纹理,也很难进行特征提取和匹配。

 

双目相机的主要优点有:

1)硬件要求低,成本也低。普通 CMOS 相机即可。

2)室内外都适用。只要光线合适,不要太昏暗。

但是双目的缺点也是非常明显:

1)对环境光照非常敏感。光线变化导致图像偏差大,进而会导致匹配失败或精度低

2)不适用单调缺乏纹理的场景。双目视觉根据视觉特征进行图像匹配,没有特征会导致匹配失败。

3)计算复杂度高。该方法是纯视觉的方法,对算法要求高,计算量较大。

4)基线限制了测量范围。测量范围和基线(两个摄像头间距)成正比,导致无法小型化。

光飞行时间法(TOF Time-Of-Flight)

        通过红外发射器发射调制过的光脉冲,遇到物体反射后,用接收器接收反射回来的光脉冲,并根据光脉冲的往返时间计算与物体之间的距离。

这种调制方式对发射器和接收器的要求较高,光速那么快,对于时间的测量有极高的精度要求。

        在实际应用中,通常调制成脉冲波(一般是正弦波),当遇到障碍物发生漫反射,再通过特制的CMOS传感器接收反射的正弦波,这时波形已经产生了相位偏移,通过相位偏移可以计算物体到深度相机的距离

        ToF技术也是有一些局限性

  1. 当拍摄物体具有多个棱角时,会造成光线折射返回到摄像头,导致测量结果失真。

  1. 强烈的阳光也会导致镜头芯片快速饱和无法检测红外的真实性,导致失真。
  2. 如果有多台ToF设备在进行工作时,会导致红外传入其他镜头中,形成互相干扰,导致失真。

 

        TOF技术同结构光技术不同,其发射的是持续不断的“面光源”。光线遇到不可穿透物体会发生反射。利用这一原理,通过记录反射光达到接收器的时间,由于光速和光波长已知,理论上便能快速计算出光源与物体的距离,由此得到一张被测物体的3D图像。

相机类型TOF飞行时间RGB双目结构光(单目/双目)
测距方式主动式被动式主动式
测量范围受光源强度限制,测量范围是几十米以内,测量精度在毫米级别受光照,基线的限制,测量精度在厘米级别受光斑图案限制,测量范围是十米之内,测量精度在毫米精度
影响因素不受光照变化和物体纹理影响,受多重反射,环境光的影响受光照变化和物体纹理影响很大,在晚上无法使用不受光照变化和物体纹理影响,受反光的影响
户外工作功率小时会受到影响不受影响有影响,和编码图案的设计有关
功耗很大,因为需要全照射很低,纯软件中等,只需要投射图案到部分区域,
帧率上百fps大,小均有几十fps,一般为30fps

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

深度相机(3D相机) 的相关文章

随机推荐

  • Adobe Premiere Pro 2023 SP(未完成)

    需要添加
  • 一个程序员所应该具备的精神

    所谓障碍都是主观上的 如果你想研发什么新的技术 xff0c 只需要在冰箱里放满食物和饮料 xff0c 再有一台便宜的计算机 xff0c 和以之献身的决心 xff0c 你即可拥有任何你想拥有的编程深度 xff01 John Carmack
  • ROS中的多线程

    ROS中的多线程 ROS多线程消息回调处理函数多线程MultiThreadedSpinnerAsyncSpinner callback传参timertimer加参数 C 43 43 中的多线程Python中的多线程 ROS使用master管
  • Linux系统下磁盘分区

    计算机的磁盘分区信息是计算机引导操作系统必须的信息 xff0c 根据引导方式的不同 xff0c 一般分别保存在MBR或者GPT中 其中 xff0c BIOS引导会读取MBR xff08 Main Boot Record xff09 中的磁盘
  • ROS中的tf发布读取转换

    ROS tf 基础使用查看tf信息1 创建link关系图2 在rqt中查看link关系图3 终端中输出tf变换关系4 rviz中查看 程序中使用TransformerTransformBroadcasterTransformListener
  • linux下shell脚本启动其他可执行程序

    linux下shell脚本启动其他可执行程序 零 前言一 C 43 43 代码二 shell脚本三 shell运行效果 零 前言 linux下的项目中经常需要使用shell脚本去启动其他程序的操作 xff0c 下面是自己编写的测试程序 xf
  • 嵌入式面试常见问题

    1 什么是嵌入式 以应用为中心 xff0c 以计算机技术为基础 xff0c 软硬件可裁剪 xff0c 适用于应用系统对功能 可靠性 成本 体积 功耗有严格要求的专用计算机系统 2 字符设备和块设备的区别 xff1f Linux里设备类型分
  • 步进电机和伺服电机的区别你知道吗?

    在许多领域都需要各种电机 xff0c 包括知名的步进电机和伺服电机 但是 xff0c 对于许多用户而言 xff0c 他们不了解这两种电机的主要区别 xff0c 因此他们始终不知道如何选择 那么 xff0c 步进电机和伺服电机之间的主要区别是
  • 独轮车成功站立

    真是废了不少力 卡了这么久首要原因就是过于青睐串级PID 串级PID可以自主寻找机械中位的特性实在是太优雅了 但动量轮这种对即使性要求极高的系统似乎不能用串级PID实现 昨天沉下心把串级PID推掉换成并联 xff0c 波形一下就朝着正常的方
  • 字节序:大端字节序(Big Endian) & 小端字节序(Little Endian)

    一 什么是字节序 xff1f 多字节数据存储在存储器中的顺序就叫做字节序 字节序又分为俩种 xff0c 一种叫做小端字节序 xff1b 另外一种叫做大端字节序 二 大端字节序 xff08 Big Endian xff09 amp 小端字节序
  • Google doc

    https docs google com spreadsheets d 1lOtc072A0QaJAXormoUeiaqZu5 20BR1ikh0YZe65PI edit gid 61 0
  • Boot Loader启动过程分析

    一 Boot Loader的概念和功能 1 嵌入式Linux软件结构与分布在一般情况下嵌入式Linux系统中的软件主要分为以下及部分 xff1a xff08 1 xff09 引导加载程序 xff1a 其中包括内部ROM中的固化启动代码和Bo
  • eclipse:解决Ctrl+S 无法保存问题

    解决Ctrl 43 S 无法保存问题 工作中有一个同事的eclipse中无法使用Ctrl 43 S保存文件 xff0c 尝试了各种方法 xff0c 禁用了所有其他软件的快捷键 xff0c 依然无法解决 xff0c 最终发现是eclipse自
  • windbg学习笔记 FOR 内核调试(三) --进程句柄表HANDLE_TABLE

    windbg学习笔记 FOR 内核调试 三 进程句柄表HANDLE TABLE 想当年 初学核编 阅读第三章的内核对象的时候跟看天书没什么感觉 死命在想到底内核对象 句柄是个什么东西 干嘛用的 于是我们工作室的老大就对我说 这篇看过就过了
  • tx2 上 安装nvidia Isaac安装记录

    Isaac的功能挺多 xff0c 但是只支持最新的版本 xff0c 所以没办法 xff0c 只能装最新的了 下面就记录一下这个过程 安装环境真是很麻烦 xff0c 不是下载失败就是下载慢 一天基本安装不完 第一步安装1804 因为只支持18
  • 关于进程间的访问权限等进程间控制资料收集

    http www vckbase com DUPLICATEHANDLE函数可以实现将同步内核对象被拷贝并且将原内核对象关闭 xff0c 从而达到可以自由控制内核对象的目的 xff0c 这可以实现使得只能单一启用的进程成为多启用的进程的目的
  • IIC总线基础知识

    IIC总线基础知识 一 简介 IIC xff08 Inter Integrated Circuit xff09 是一个多主从的串行总线 xff0c 又叫I2C xff0c 是由飞利浦公司发明的通讯总线 xff0c 属于半双工同步传输类型总线
  • 常见RISC-V介绍

    当前一颗新出的CPU xff1a RISC V简直火透了半边天 xff0c 无论是财大气粗的阿里系的平头哥 xff0c 还是新创企业 xff0c 似乎只要和RISC V挂上钩就足可以实现赶英超美 那事实上RISC V是什么 xff1f 除了
  • qsort的compare函数

    qsort的compare函数 功能 xff1a 使用快速排序例程进行排序 头文件 xff1a stdlib h 用法 xff1a void qsort void base size t num size t width int cdecl
  • 深度相机(3D相机)

    二维图片 xff0c 人眼可以通过物体的相对位置关系判断物体距离的远近 xff0c 而相机则不可以 深度相机 xff08 3D相机 xff09 就是终端和机器人的眼睛 xff0c 其就是通过该相机能检测出拍摄空间的景深距离 通过深度相机获取