opencv中ArUco识别

2023-05-16

  姿态估计(Pose estimation)在 计算机视觉领域扮演着十分重要的角色: 机器人导航、增强现实以及其它。这一过程的基础是找到现实世界和图像投影之间的对应点。这通常是很困难的一步,因此我们常常用自己制作的或基本的Marker来让这一切变得更容易。

        最为流行的一个途径是基于二进制平方的标记。这种Marker的主要便利之处在于,一个Marker提供了足够多的对应(四个角)来获取相机的信息。同样的,内部的二进制编码使得算法非常健壮,允许应用错误检测和校正技术的可能性。

       aruco模块基于ArUco库,这是一个检测二进制marker的非常流行的库,是由Rafael Muñoz和Sergio Garrido完成的。

       aruco的函数包含在c++ #include <opencv2/aruco.hpp>

Marker和字典

        一个ArUco marker是一个二进制平方标记,它由一个宽的黑边和一个内部的二进制矩阵组成,内部的矩阵决定了它们的id。黑色的边界有利于快速检测到图像,二进制编码可以验证id,并且允许错误检测和矫正技术的应用。marker的大小决定了内部矩阵的大小。例如,一个4x4的marker由16bits组成。

        一些ArUco markers的例子:

markers.jpg
Example of markers images

        应当注意到,我们需要检测到一个Marker在空间中发生了旋转,但是,检测的过程需要确定它的初始角度,所以每个角落需要是明确的,不能有歧义,保证上述这点也是靠二进制编码完成的。

        markers的字典是在一个特殊应用中使用到的marker的集合。这仅仅是每个marker的二进制编码的链表。

        字典的主要性质是字典的大小和marker的大小:

  • 字典的大小是组成字典的marker的数量
  • marker的大小是这些marker的尺寸(位的个数)

        aruco模块包含了一些预定义的字典,这些字典涵盖了一系列的字典大小和Marker尺寸。

       有些人可能会认为Marker的id是从十进制转成二进制的。但是,考虑到较大的marker会有较多的位数,管理如此多的数据不那么现实,这并不可能。反之,一个marker的id仅需是marker在它所在的字典的下标。例如,一个字典里的五个marker的id是:0,1,2,3和4。

        更多有关字典的信息在“选择字典”部分提及。


创建Marker

        在检测之前,我们需要打印marker,以把它们放到环境中。marker的图像可以使用drawMarker()函数生成。

        例如,让我们分析一下如下的调用:

``` c++ 

    cv::Mat markerImage; cv::aruco::Dictionary dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);

    cv::aruco::drawMarker(dictionary, 23, 200, markerImage, 1); ```


        首先,我们通过选择aruco模块中一个预定义的字典来创建一个字典对象,具体而言,这个字典是由250个marker组成的,每个marker的大小为6x6bits(DICT_6X6_250)

         drawMarker的参数如下:

  • 第一个参数是之前创建的字典对象。
  • 第二个参数是marker的id,在这个例子中选择的是字典DICT_6X6_250第23个marker。注意到每个字典是由不同数目的Marker组成的,在这个例子中,有效的Id数字范围是0到249。不在有效区间的特定id将会产生异常。
  • 第三个参数,200,是输出Marker图像的大小。在这个例子中,输出的图像将是200x200像素大小。注意到这一参数需要满足能够存储特定字典 的所有位。所以,举例而言,你不能为6x6大小的marker生成一个5x5图像(这还没有考虑到Marker的边界)。除此之外,为了避免变形,这一参数最好和位数+边界的大小成正比,至少要比marker的大小大得多(如这个例子中的200),这样变形就不显著了。
  • 第四个参数是输出的图像。
  • 最终,最后一个参数是一个可选的参数,它指定了Marer黑色边界的大小。这一大小与位数数目成正比。例如,值为2意味着边界的宽度将会是2的倍数。默认的值为1。
  • 生成的图像如下:
  marker23.jpg
Generated marker

        详细的例子在模块演示文件夹中的 create_marker.cpp 

检测Marker

给定一个可以看见ArUco marker的图像,检测程序应当返回检测到的marker的列表。每个检测到的marker包括:

  • 图像四个角的位置(按照原始的顺序)
  • marker的Id

marker检测过程由以下两个主要步骤构成:

  1. 检测有哪些marker。在这一阶段我们分析图像,以找到哪些形状可以被识别为Markers。首先要做的是利用自适应性阈值来分割marker,然后从阈值化的图像中提取外形轮廓,并且舍弃那些非凸多边形的,以及那些不是方形的。我们还使用了一些额外的滤波(来剔除那些过小或者过大的轮廓,过于相近的凸多边形,等)
  2. 检测完marker之后,我们有必要分析它的内部编码来确定它们是否确实是marker。此步骤首先提取每个标记的标记位。为了达到这个目的,首先,我们需要对图像进行透视变换,来得到它规范的形态(正视图)。然后,对规范的图像用Ossu阈值化以分离白色和黑色位。这一图像根据marker大小和边界大小被分为不同格子,我们统计落在每个格子中的黑白像素数目来决定这是黑色还是白色的位。最终,我们分析这些位数来决定这个marker是属于哪个特定字典的,如果有必要的话,需要对错误进行检测。
        考虑如下图像:
singlemarkersoriginal.png
Original image with markers

这些是检测出来的marker(用绿色标记)

singlemarkersdetection.png
Image with detected markers

以下是识别阶段被剔除的Marker候选(用粉红色标记):

singlemarkersrejected.png
Image with rejected candidates

        在aruco模块,检测是由detectMarkers() 函数完成的,这一函数是这个模块中最重要的函数,因为剩下的所有函数操作都基于detectMarkers()返回的检测出的markers。

        一个marker检测的例子:

``` c++ 

cv::Mat inputImage;

vector< int > markerIds; 

vector< vector<Point2f> > markerCorners, rejectedCandidates; 

cv::aruco::DetectorParameters parameters; 

cv::aruco::Dictionary dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250); 

cv::aruco::detectMarkers(inputImage, dictionary, markerCorners, markerIds, parameters, rejectedCandidates); ```

detectMarkers 的参数为:

  • 第一个参数是待检测marker的图像。
  • 第二个参数是字典对象,在这一例子中是之前定义的字典 (DICT_6X6_250).
  • 检测出的markers存储在markerCorners  markerIds结构中:
    • markerCorners 是检测出的图像的角的列表。对于每个marker,将返回按照原始顺序排列的四个角(从左上角顺时针开始)。因此,第一个点是左上角的角,紧接着右上角、右下角和左下角。
    • markerIds 是在markerCorners检测出的所有maker的id列表.注意返回的markerCornersmarkerIds 向量具有相同的大小。 
  • 第四个参数是类型的对象 DetectionParameters. 这一对象包含了检测阶段的所有参数。这一参数将在 下一章节详细介绍。
  • 最后的参数, rejectedCandidates, 返回了所有的marker候选, 例如, 那些被检测出来的不是有效编码的方形。每个候选同样由四个角定义, 它的 形式和markerCorners的参数一样。这一参数可以省略,它仅仅用于debug阶段,或是用于“再次寻找”策略(见refineDetectedMarkers())

 detectMarkers()之后,接下来你想要做的事情可能是检查你的marker是否被正确地检测出来了。幸运的是,aruco模块提供了一个函数,它能在输入图像中来绘制检测出来的markers,这个函数就是drawDetectedMarkers() ,例子如下:

``` c++ cv::Mat outputImage cv::aruco::drawDetectedMarkers(image, markerCorners, markerIds); ```

  • image 是输入/输出图像,程序将在这张图上绘制marker。(它通常就是检测出marker的那张图像)
  • markerCorners 和 markerIds 是检测出marker的结构,它们的格式和 detectMarkers()函数提供的一样。
singlemarkersdetection.png
Image with detected markers

       注意到这个函数仅仅用于可视化,而没有别的什么用途。

       使用这两个函数我们完成了基本的marker识别步骤,我们可以从相机中检测出Marker了。

``` c++ 

cv::VideoCapture inputVideo; 

inputVideo.open(0); 

cv::aruco::Dictionary dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250); 

while (inputVideo.grab()) { 

        cv::Mat image, imageCopy;

         inputVideo.retrieve(image); 

         image.copyTo(imageCopy);

         std::vector<int> ids; std::vector<std::vector<cv::Point2f> > corners; 

         cv::aruco::detectMarkers(image, dictionary, corners, ids);

        // if at least one marker detected 

         if (ids.size() > 0) 

                cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);

        cv::imshow("out", imageCopy); 

        char key = (char) cv::waitKey(waitTime); 

        if (key == 27) break; 

} ```


       注意到这里忽略了有些可选的参数,比如检测参数对象、以及输出的被剔除的候选对象向量。

       完整的工程代码包含在模块样例文件夹中的detect_markers.cpp 


Pose检测

        接下来你想要做的应当是通过Marker检测来获取相机pose。

        为了展现相机的Pose检测,你需要知道你的相机的校准(Calibration)参数。这是一个相机矩阵和畸变系数。如果你不知道如何校准你的相机,你可以看一看calibrateCamera() 函数,以及OpenCV的校准教程。你同样可以使用aruco模块来校准你的相机,这在使用aruco进行校准的教程中将会介绍。注意这个过程只需要做一次,除非你的相机的光学性质发生了改变(例如调焦)

        最后,在校准之后我们得到的是相机矩阵:这是一个3x3的矩阵,包含了焦距和相机中心坐标(相机的内参),以及畸变系数:一个包含五个以上元素的向量,它描述的是相机产生的畸变。

        当你用ArUco marker来检测相机Pose时,你可以单独地检测每个Marker的pose。如果你想要从一堆Marker里检测出一个pose,你需要的是aruco板。(参见ArUco板教程)

        涉及到marker的相机pose是一个从marker坐标系统到相机坐标系统的三维变换。这是由一个旋转和一个平移向量确定的(参见 solvePnP() 函数)

        aruco模块提供了一个函数,用来检测所有探测到的Marker的pose。


``` c++ 

Mat cameraMatrix, distCoeffs; 

... 

vector< Vec3d > rvecs, tvecs; 

cv::aruco::estimatePoseSingleMarkers(corners, 0.05, cameraMatrix, distCoeffs, rvecs, tvecs); 

```

  • corners 参数是marker的角向量,是由detectMarkers() 函数返回的。
  • 第二个参数是marker的大小(单位是米或者其它)。注意Pose检测的平移矩阵单位都是相同的。
  • cameraMatrix 和 distCoeffs 是需要求解的相机校准参数。
  • rvecs 和 tvecs 分别是每个markers角的旋转和平移向量。

        这一函数获取的marker坐标系统处在marker重心,Z坐标指向纸面外部,如下图所示。坐标的颜色为,X:红色,Y:绿色,Z:蓝色。

singlemarkersaxis.png
Image with axis drawn

        aruco模块提供了一个函数绘制上图中的坐标,所以我们可以检查pose检测的正确性。

``` c++ 

cv::aruco::drawAxis(image, cameraMatrix, distCoeffs, rvec, tvec, 0.1); 

```

  • image 是输入/输出图像,坐标将会在这张图像上绘制(通常就是检测marker的那张图像)。
  • cameraMatrix 和 distCoeffs 是相机校准参数。
  • rvec 和 tvec 是Pose参数,指明了坐标绘制的位置。
  • 最后一个参数是坐标轴的长度,和tvec单位一样(通常是米)。

针对一个marker的pose检测的基本的完整示例:

``` c++ 

cv::VideoCapture inputVideo;

inputVideo.open(0);

cv::Mat cameraMatrix, distCoeffs; // camera parameters are read from somewhere 

readCameraParameters(cameraMatrix, distCoeffs);

cv::aruco::Dictionary dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);

while (inputVideo.grab()) { 

        cv::Mat image, imageCopy;

        inputVideo.retrieve(image); 

        image.copyTo(imageCopy);

        std::vector<int> ids; 

        std::vector<std::vector<cv::Point2f> > corners; 

        cv::aruco::detectMarkers(image, dictionary, corners, ids);// if at least one marker detected 

        if (ids.size() > 0) { 

                cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);

                vector< Mat > rvecs, tvecs; 

                cv::aruco::estimatePoseSingleMarkers(corners, 0.05, cameraMatrix, distCoeffs, rvecs, tvecs); // draw axis for each marker 

                for(int i=0; i<ids.size(); i++) 

                        cv::aruco::drawAxis(imageCopy, cameraMatrix, distCoeffs, rvecs[i], tvecs[i], 0.1); 

        }

        cv::imshow("out", imageCopy); 

        char key = (char) cv::waitKey(waitTime); 

        if (key == 27) break; 

} ```

        样例视频:

        ![ArUco markers detection video](http://img.youtube.com/vi/IsXWrcB_Hvs/0.jpg)

        完整的工程代码包含在模块样例文件夹中的 detect_markers.cpp

选择字典

        aruco模块提供了Dictionary类来描述marker的字典。

        除了marker大小和字典中的marker数目,字典还有一个很重要的参数,就是内部marker的距离。内部marker的距离是marker之间的最小距离,它决定了字典错误检测和纠正能力。

)        一般而言,较小的字典大小和较大的marker大小将会产生更大的内部marker距离,反之亦然。但是,过大的Marker在检测中更加困难,因为我们需要从图像中提取出更多位的信息。

        例如,如果你的应用中仅仅需要10个marker,最好使用只包含10个marker的字典,而不是包含1000个marker的字典。原因在于,由10个marker组成的字典将会有更大的内部Marker距离,因此,它的容错性更强。

        结果,aruco模块包含了很多选择marker字典的途径,所以你可以让你的系统变得更加健壮。

  • 预定义的字典:

        这是选择字典最简单的办法。aruco模块包含了一系列预定义的字典,涵盖了不同的marker大小和marker数量。例如:

``` c++ 

cv::aruco::Dictionary dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250); ```

        DICT_6X6_250 是一个预定义的字典,它包含6x6位的marker,总共有250个marker。

        在所有提供的字典中,我们推荐使用你选择尽可能小的marker。例如,如果你需要6x6位的200个marker,选择DICT_6X6_250要优于选择DICT_6X6_1000。字典越小,内部距离就越大。

        

  • 自动生成的字典:

        我们可以针对想要的marker数量和位来生成字典,以得到最优的内部Marker距离。

``` c++ 

cv::aruco::Dictionary dictionary = cv::aruco::generateCustomDictionary(36, 5); ```

       这将会产生一个由36个5X5位字典组成的标准字典。这个过程需要几秒钟,具体时间取决于你的参数(更大的字典和更多的位数会耗费更多的时间)


  • 手动生成的字典:

        最终,我们可以手动设置字典,方便做任何修改。为了做到这一点,我们需要手动给 Dictionary 对象参数赋值。必须注意的是,除非你有一些特别的理由需要自己来生成字典,一般情况下我们推荐前面的任一种方案。

       字典参数为:

``` c++ 

class Dictionary { 

public:

        Mat bytesList; 

        int markerSize; 

        int maxCorrectionBits; // maximum number of bits that can be corrected

        ...

}

```

 
     
 
bytesList
 是一个数组,它包含了所有marker代码的信息。markerSize是每个marker的维度(例如,参数为5代表5x5位)。最终, maxCorrectionBits是marker检测中 可校正的最大比特数,如果这个值过大,会得到大量的错误位置。

        bytesList 中的每一行代表字典中的一个marker。但是,这些marker的数据并不以二进制形式存储,而是以一种特殊的方式存储,这样可以简化检测的过程。

        幸运的是,我们可以简单地调用静态方法Dictionary::getByteListFromBits()来转换到这种形式。

        示例:

``` c++ 

        Dictionary dictionary; 

        // markers of 6x6 bits 

        dictionary.markerSize = 6; 

         // maximum number of bit corrections 

        dictionary.maxCorrectionBits = 3;

        // lets create a dictionary of 100 markers 

        for(int i=0; i<100; i++) {// assume generateMarkerBits() generate a new marker in binary format, so that 

                // markerBits is a 6x6 matrix of CV_8UC1 type, only containing 0s and 1s 

                cv::Mat markerBits = generateMarkerBits(); 

                cv::Mat markerCompressed = getByteListFromBits(markerBits); // add the marker as a new row

                dictionary.bytesList.push_back(markerCompressed); 

        }

```

检测参数

        detectMarkers()的一个参数是DetectorParameters对象。这一对象包含了marker检测过程中所有特定的选项。

        在这一章节中,我们将介绍所有的参数。我们可以根据它们涉及的阶段来给这些参数分类。

阈值化

        检测的第一步是输入图像的阈值化。

        例如,上述样例中的图像阈值化的结果如下:

singlemarkersthresh.png
Thresholded image

        这一阈值化过程由以下几个参数决定:

  • int adaptiveThreshWinSizeMinint
    adaptiveThreshWinSizeMax
    int adaptiveThreshWinSizeStep

       
adaptiveThreshWinSizeMin
 和 adaptiveThreshWinSizeMax 参数代表选择的自适应阈值窗口大小(以像素为单位)间隔(具体参见opencv的 threshold()函数)。

        参数adaptiveThreshWinSizeStep表明了窗口从adaptiveThreshWinSizeMinadaptiveThreshWinSizeMax大小的增量。

        例如,对于adaptiveThreshWinSizeMin=5,adaptiveThreshWinSizeMax=21以及adaptiveThreshWinSizeStep=4,那么将会产生5个阈值化步骤,窗口大小分别为5, 9, 13, 17 和 21。在每个阈值化图像中,都会选出一些marker候选。

        如果marker大小太大的话,较小的窗口大小可能会切割marker的边界,所以它将不会被检测到,就像下图一样:

singlemarkersbrokenthresh.png
Broken marker image

        另一方面,如果marker太小的话,较大的窗口大小也会有类似的效果。此外这一过程将会趋向于全局阈值,而失去了自适应的特性。

        最简单的例子是对adaptiveThreshWinSizeMin adaptiveThreshWinSizeMax使用相同的值,这样就只会执行一次阈值化步骤。但是,最好还是使用一个范围的值作为窗口大小,虽然较多的阈值化步骤会在一定程度上降低性能。

        缺省参数:adaptiveThreshWinSizeMin: 3, adaptiveThreshWinSizeMax: 23, adaptiveThreshWinSizeStep: 10

  • double adaptiveThreshConstant

        这一参数表达了阈值状态下的常量(参见Opencv函数)。它的默认值是大多数例子下较好的情况。

        默认值: 7

轮廓滤波

        阈值化之后,我们需要检测轮廓。但是,我们并不会把所有的轮廓都当作是候选。在不同步骤中,我们通过滤波剔除一些不太可能是marker的轮廓。这一章节中的参数可以自定义这一过程。

        需要注意到,大多数例子中我们需要平衡检测的性能和效率。所有考虑到的轮廓都会在接下来的过程中做进一步处理,这通常产生了更高的计算消耗。所以,我们希望能够在这一阶段就丢弃错误的候选,而不是下一阶段继续处理。

        另一方面,如果滤波的条件过于苛刻,事实上的marker轮廓可能会被错误地剔除,因此,没有检测到marker。

  • double minMarkerPerimeterRatedouble
    maxMarkerPerimeterRate

        这些参数决定了marker的最小值和最大值,具体来说,是最大最小marker的周长。它们并不是以绝对像素值作为单位,而是相对于输入图片的最大尺寸指定的。

        例如,大小为640x480,最小相对marker周长为0.05的图像,将会产生一个最小周长640x0.05 = 32(像素)的marker,因为640是图像的最大尺寸。参数 maxMarkerPerimeterRate 也是类似的。

        如果 minMarkerPerimeterRate太小,检测阶段性能会降低,因为会有更多的轮廓进入到接下来的阶段。这一弊端对于 maxMarkerPerimeterRate参数而言不是那么显著,因为小的轮廓数目通常要多于大的轮廓。选取 minMarkerPerimeterRate值为0以及值为4,就相当于考虑了图像中的所有轮廓,但是出于性能考虑这是不推荐的。

        缺省值:

Default values:minMarkerPerimeterRate : 0.03, maxMarkerPerimeterRate : 4.0


  • double polygonalApproxAccuracyRate

        我们对所有的候选进行多边形近似,只有近似结果为方形的形状才能通过测试。这一值决定了多边形近似产生的最大误差(参见approxPolyDP() 函数)。

        这一参数是相对于候选长度的(像素上)。所以如果候选的周长为100像素,polygonalApproxAccuracyRate的值为0.04,那么最大的误差应当为100x0.04=5.4像素。

        在大多例子中,缺省参数的表现已经很好了,但对高失真的图像,我们需要更大的误差值。

        缺省值:0.05

  • double minCornerDistanceRate

        同一张marker中每一对角的最小距离。这是相对于marker周长的值。像素的最小距离为Perimeter * minCornerDistanceRate.

        缺省值: 0.05

  • double minMarkerDistanceRate

        两张不同的marker之间的任一对角的最小距离。它表示相对于两个marker的最小标记周长。如果两个候选太接近,较小的一个被忽略。

        缺省值:0.05

  • int minDistanceToBorder

        marker角到图像边缘最小距离。部分图像边缘被遮挡的marker也能被正确地检测出来,如果遮挡部分比较小的话。但是,如果其中一个角被挡住了,返回的角通常在图像边界的一个错误的位置。

        如果marker角的位置很重要的话,例如你想要做pose检测,最好舍弃掉那些离图像边缘太接近的角。否则就没有必要。

        缺省值:3

比特位提取

       检测到候选之后,我们需要分析每个候选的比特位,来确定它们是不是marker。

       在分析二进制编码之前,我们需要提取出比特位。为了达到这个目的,将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。

        以下是一个透视变换后的图像:

removeperspective.png
Perspective removing

        接下来,图像被划分为网格,和marker位数相同。在每个单元格里,我们统计黑色和白色的个数,决定这个单元格的比特位。

bitsextraction1.png
Marker cells

以下参数可以自定义这一过程:

  • int markerBorderBits

        这一参数指定了marker边界的宽度。这和每个比特位的大小相关。因此,值为2意味着边界的长度是两个内部比特位的长度。

        这一参数需要和你使用的Marker边界大小一致,边界的大小可以在绘制函数如 drawMarker()中设置。

        缺省值:1

  • double minOtsuStdDev

        这个值决定了进行Otsu的最小标准差的像素值。如果偏差很低,这可能意味着所有方形都是黑色的(或白色的),Ostu将不起作用。如果是这样的话,所有的比特位都根据平均值大于还是小于128被设为0或者1.

        缺省值:5.0


  • int perpectiveRemovePixelPerCell

        这一参数决定了透视变换后图像的像素数目(每个单元格,包含边界)。这是上图中红色正方形的大小。

        例如,让我们假设我们在处理5x5比特位、边界为1比特位的marker(参见markerBorderBit)。然后,每一维的单元格/比特位的个数为:5 + 2* 1 = 7(边界需要被统计2次)。单元格总体大小为:7x7。

        如果perpectiveRemovePixelPerCell的值为10,那么获取到的图像大小为10*7 = 70 -> 70x70 

        这一参数选择更大的值可以提升比特位的提取过程(在某一程度上),但是它同样也降低了性能。

        缺省值:4


  • double perspectiveRemoveIgnoredMarginPerCell

        当提取每个单元格的比特位时,需要统计黑色和白色的像素个数。一般而言,我们不推荐考虑单元格的所有像素。反之,最好忽略单元格的一些像素。

        原因在于,透视变换之后,单元格的颜色不会完全分离,白色的单元格可能会混入一些黑色的单元格(反之亦然)。因此,最好忽略这些像素,以避免错误的像素计数。

        例如,以下图像:

bitsextraction2.png
Marker cell margins

         我们只考虑处在绿色正方形中的像素。我们可以在右边的图像中看到,最终的像素包含了邻域单元格更少的噪声。参数perspectiveRemoveIgnoredMarginPerCell 指明了红色和绿色正方形之间的距离。

        这一参数是相对于单元格整体的大小的。例如,如果单元格的大小为40像素,这一参数的值为0.1,那么大小为40*0.1=4像素的边界将被剔除。这意味着每个单元格实际上要分析的像素大小为32x32,而不是40x40。

         缺省值:0.13


Marker ID

         比特位提取之后,接下来的步骤是检查提取的编码是否属于这个marker字典,有必要的话,还需要做错误检测步骤。

  • double maxErroneousBitsInBorderRate

        marker边界的比特位应当是黑色的。这一参数指明了允许的边界出错比特位的个数。如,边界可以出现的白色比特位的最大值。它的大小相对于marker中的比特位总数。

        缺省值:0.35


  • double errorCorrectionRate

        每个marker字典有一位可以纠正的理论最大值(Dictionary.maxCorrectionBits)。但是,这个值可以由errorCorrectionRate 参数来修改。

        例如,如果允许纠正的比特位(对于使用的字典)数目为6, errorCorrectionRate的值为0.5,那么实际上最大的可以纠正的比特位个数为6*0.5=3

        这一值对减少错误容忍率以避免错误的位置识别很有帮助。

        缺省值:0.6


角落细化(Corner Refinement)

        当我们检测完marker,并且验证了它们的id之后,最后要做的一步是在角落处的亚像素级的细化(参见OpenCV cornerSubPix())

        注意,这一步是可选的,仅在我们对marker角位置的准确性要求很高时才有意义。例如,pose的检测。这一步骤很耗费时间,所以默认下是不做的。

  • bool doCornerRefinement

        这一参数决定了是否要进行角落亚像素级细化过程,如果对角点的准确性要求不高,可以不进行这一过程。

        缺省值:false


  • int cornerRefinementWinSize

        这一参数决定了亚像素级细化过程的窗口大小。

        较大的值可以产生窗口区域内比较靠近的图像角,marker角会移动到一个不同的错误的地方。除此之外这还会影响到性能。

        缺省值:5


  • int cornerRefinementMaxIterationsdouble
    cornerRefinementMinAccuracy

        这两个值决定了亚像素级细化过程的结束条件。cornerRefinementMaxIterations指明了迭代的最大次数,cornerRefinementMinAccuracy 是结束这一过程前的最小错误值。

        如果迭代次数过高,这会影响到性能。此外,如果太小的话,亚像素级细化就基本没有发挥作用。

        缺省值:

cornerRefinementMaxIterations: 30, cornerRefinementMinAccuracy: 0.1

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

opencv中ArUco识别 的相关文章

  • 来自连接到远程机器的相机的 Opencv 流

    我正在用 python 开发一个 wx 应用程序 用于流式传输和显示来自两个不同网络摄像头的视频 这工作正常 但现在我需要在不同的场景中执行此操作 其中两个摄像头连接在通过网络连接的 Windows 上运行的单独计算机中 我的应用程序将在机
  • 无法在 Windows 7 机器中使用 OpenCV 2.4.3、Python 2.7 打开“.mp4”视频文件

    我目前正在进行一个涉及读取 mp4 视频文件的项目 我遇到的问题是它在Windows 7机器上使用Python 2 7 32位 OpenCV 2 4 3 cv2 pyd 代码片段如下 try video cv2 VideoCapture v
  • BASH 脚本编译多个 C++ 文件 - OpenCV

    请参见在C 和OpenCV中调用其他文件中的函数 https stackoverflow com questions 24442836 call functions in other files in c and opencv 对于最初的问
  • 指纹奇异点检测

    我正在尝试确定指纹的核心点和增量点 我正在使用庞加莱指数方法 但我无法成功检测到这一点 而且我不明白为什么 First I divide the image in 15x15 blocks then I calculate the x an
  • OpenCV C++ 如何知道每行的轮廓数进行排序?

    我有一个二值图像 https i stack imgur com NRLVv jpg在这张图片中 我可以使用重载的函数轻松地对从上到下 从左到右找到的轮廓进行排序std sort 我首先通过以下方式从上到下排序 sort contours
  • OpenCV 2.3 与 VS 2008 - 鼠标事件

    强制性 我是新手 有一份涉及编程的工作 并且我一边工作一边自学 不用说 作为一名老师 我经常犯彻底的错误 我现在所处的位置 我创建了 Graph 类 它 令人惊讶的是 制作了图表 但现在我想通过单击鼠标来修改图形 但我似乎无法让鼠标处理程序
  • 创建 OpenCV 的 mouseCallback 函数的基于类的实现时遇到问题

    正如标题所示 我在基于类的 C 结构中实现 OpenCV 的 mouseCallback 函数时遇到了一些麻烦 请允许我解释一下 我定义了一个名为 BriskMatching 的类 在其中创建了一个名为 mouseCallback 的成员函
  • ffmpeg AVFrame 到 opencv Mat 转换

    我目前正在开发一个使用 ffmpeg 解码接收到的帧的项目 解码后 我想将 AVFrame 转换为 opencv Mat 帧 以便我可以在 imShow 函数上播放它 我拥有的是字节流 我将其读入缓冲区 解码为 AVFrame f fope
  • minAreaRect OpenCV 返回的裁剪矩形 [Python]

    minAreaRectOpenCV 中返回一个旋转的矩形 如何裁剪矩形内图像的这部分 boxPoints返回旋转矩形的角点的坐标 以便可以通过循环框内的点来访问像素 但是在 Python 中是否有更快的裁剪方法 EDIT See code在
  • 如何将 Mat (opencv) 转换为 INDArray (DL4J)?

    我希望任何人都可以帮助我解决这个任务 我正在处理一些图像分类并尝试将 OpenCv 3 2 0 和 DL4J 结合起来 我知道DL4J也包含Opencv 但我认为它没什么用 谁能帮我 如何转换成 INDArray 我尝试阅读一些问题here
  • 在 Visual Studio 2012 中安装 OpenCV

    我正在尝试安装 OpenCV 来与 Visual Studio 一起使用 我使用的是2012Pro版本 但我认为它应该与vs10相同 我正在关注这个教程 http docs opencv org doc tutorials introduc
  • YOLOv8获取预测边界框

    我想将 OpenCV 与 YOLOv8 集成ultralytics 所以我想从模型预测中获取边界框坐标 我该怎么做呢 from ultralytics import YOLO import cv2 model YOLO yolov8n pt
  • cv2.VideoWriter:请求一个元组作为 Size 参数,然后拒绝它

    我正在使用 OpenCV 4 0 和 Python 3 7 创建延时视频 构造 VideoWriter 对象时 文档表示 Size 参数应该是一个元组 当我给它一个元组时 它拒绝它 当我尝试用其他东西替换它时 它不会接受它 因为它说参数不是
  • “没有名为‘cv2’的模块”,但已安装

    我已经安装了包含 opencv 贡献的 whl 文件 因为我想使用 SIFT 算法 我在 conda 环境中使用 pip 安装了它 所以当我在 conda list 中提示时 它会向我显示 opencv python 3 4 5 contr
  • 为什么Android的ImageReader类这么慢?

    我尝试了适用于 Android 3 4 1 的全新 OpenCVJavaCamera2View但它太慢了 仅显示相机视图约 15 fps 当我尝试较旧的JavaCameraView相反 它给了我很好的结果 30fps 这是我相机的极限 我想
  • OpenCV 2.2 和多 CPU - opencv_haartraining.exe 是多线程的吗?

    我在 VS 2010 上构建了 OpenCV 2 2 启用了 TBB 3 支持 我确保所有项目都有正确的 tbb lib 目录 并将 tbb lib 列为依赖项 通过隐藏 tbb dll 进行验证 果然 haartraining exe 抱
  • VideoCapture.read() 返回过去的图像

    我在跑python3 6 with openCV on the Raspberry pi OS is Raspbian 代码的大致结构如下 The image以时间间隔 3 5 分钟 捕获 被捕获image在函数中处理并返回度量 精度的种类
  • BRISK 特征检测器检测零个关键点

    下面显示的 Brisk 探测器没有给我任何关键点 有人可以提出一个问题吗 我将尝试用一些代码解释我在下面所做的事情 include opencv2 features2d features2d hpp using namespace cv u
  • iphone opencv - 模板匹配

    我已经在我的 iphone 项目中实现了这个 OpenCV 构建 http aptogo co uk 2011 09 opencv framework for ios http aptogo co uk 2011 09 opencv fra
  • 如何检测图像是否像素化

    之前有人在 SO 上提出过这样的问题 在Python中检测像素化图像 https stackoverflow com questions 12942365 detecting a pixelated image in python还有关于q

随机推荐

  • makefile 转 cmake STM32工程

    makefile 转 cmake STM32工程 STM32开发由MDK转到 vscode好久了 每次新建工程 xff0c stm32cubemx生成代码都要手动把makefile转到cmake xff0c 好烦 xff0c 特别一下小的频
  • STM32使用FreeRtos + C++

    编译环境 MDK5 25 gcc arm7 2 C文件不可包含CPP的头文件 C调用C 43 43 函数 在CPP文件内编写C函数 xff0c 头文件声明 头文件不可出现C 43 43 关键字 在main中调用此函数作为程序入口即可 voi
  • FreeRTOS系列|时间管理

    FreeRTOS时间管理 1 FreeRTOS延时函数 在使用FreeRTOS的过程中经常会在一个任务中使用延时函数对该任务延时 xff0c 当执行延时函数的时候就会进行任务切换 xff0c 并且此任务就会进入阻塞态 xff0c 直到延时完
  • 【Linux C与C++一线开发实践】之一 Linux概述与Linux C++开发

    Linux系统启动的基本过程 对于一台Linux系统来说 xff0c 用户按下开机按钮后 xff0c 一共要经历如下几个过程
  • 【Linux C与C++一线开发实践】之三 Linux多进程

    进程是操作系统结构的基础 进程是一个具有独立功能的程序对某个数据集在处理机上的执行过程 xff0c 进程也是作为资源分配的一个基本单位 Linux作为一个多用户 多任务的操作系统 xff0c 必定支持多进程 多进程是现代操作系统的基本特征
  • C++--结构体和类

    结构体和类只有一个区别就是前者访问控制默认为public xff0c 而类的默认访问控制是private 而对于public private protected的访问控制都是在编译期间由编译器检查的 xff0c 编译通过后 xff0c 程序
  • 嵌入式开发工程师面试题 – C语言部分

    嵌入式开发工程师面试题 C语言部分 申明 xff1a 来源于嵌入式开发工程师面试题 C语言部分 和 网摘 xff09 xff01 1 内核的裁剪怎么裁剪 解析 xff1a 在linux 下的ubuntu 上面做内核的 裁剪 xff0c 主要
  • 协方差与自相关

    协方差矩阵是一个矩阵 xff0c 其每个元素是各个向量元素之间的协方差 这是从标量随机变量 到高维度随机向量 的自然推广 假设是以个标量随机变量组成的列向量 xff0c 并且是其第i个元素的期望值 xff0c 即 协方差矩阵被定义的第i x
  • 基础解系

    基础解系首先是线性无关的 xff0c 简单的理解就是能够用它的线性组合表示出该 方程组的任意一组解 xff0c 基础解系是针对有无数多组解的方程而言 xff0c 若是齐次线性方程组则应是有效方程组的个数少于未知数的个数 xff0c 若非齐次
  • 机器学习实践指南:案例应用解析(第二版)

    试读及购买链接 机器学习实践指南2版代码及资源 原书中的360网盘链接因为360关闭网盘的原因已经失效 1 https pan baidu com s 1nw37A5N 2 http www hzbook com Books 9324 ht
  • 数学之路-python计算实战(7)-机器视觉-图像产生加性零均值高斯噪声

    图像产生加性零均值高斯噪声 xff0c 在灰度图上加上噪声 xff0c 加上噪声的方式是每个点的灰度值加上一个噪声值 xff0c 噪声值的产生方式为Box Muller算法 生成高斯噪声 在计算机模拟中 xff0c 经常需要生成正态分布的数
  • 数学之路-python计算实战(16)-机器视觉-滤波去噪(邻域平均法滤波)

    coding utf 8 code myhaspl 64 myhaspl com 邻域平均法滤波 半径为2 import cv2 import numpy as np fn 61 34 test3 jpg 34 myimg 61 cv2 i
  • R语言与数据模型(1)-平均,方差,中位数,分位数,极差

    1 求平均数 gt x lt c 1 10 20 30 40 50 NA 60 gt xm lt mean x gt xm 1 NA na rm表示允许缺失数据NA gt xm lt mean x na rm 61 TRUE gt xm 1
  • FreeRTOS系列|中断管理和临界段

    FreeRTOS中断管理和临界段 1 中断管理 1 1 中断管理简介 中断是微控制器的一个常见特性 xff0c 中断由硬件产生 xff0c 当中断产生后CPU就会中断当前的流程转而去处理中断服务 xff0c Cortex M内核的MCU提供
  • AI理论随笔-对称矩阵、正交矩阵与特征向量,特征值(2)

    一 如果 xff1a A A T 61 E AA T 61 E A A T 61 E
  • 英文过滤停用词

    span class token triple quoted string string 34 34 34 Created on Sun Nov 13 09 14 13 2016 64 author daxiong 34 34 34 spa
  • C语言随笔-去掉仅有\n的行

    include lt stdio h gt int main int argc const char argv char str 128 char linep strcpy str 34 12 35 56 n12 33 87 n n n n
  • python3.6-深入浅出视频

    课程收益 适合人群 python小白 xff0c 大数据和机器学习编程程序员 上机实践为主线 以最快的速度上手 快速入门 xff0c 还学到了python3的核心知识 https edu csdn net course detail 989
  • 数学之路(3)-机器学习(3)-机器学习算法-神经网络[11]

    多层感知器的代码 xff0c 需要一个比较复杂的调试过程 xff0c 不过也有一些方法来加快这一速度 xff0c 其中有几个地方要注意 xff1a 1 输入层 输出层 中间层的学习率和动量参数不能一样 xff0c 2 3个层的权值策略不能一
  • opencv中ArUco识别

    姿态估计 xff08 Pose estimation xff09 在 计算机视觉领域扮演着十分重要的角色 xff1a 机器人导航 增强现实以及其它 这一过程的基础是找到现实世界和图像投影之间的对应点 这通常是很困难的一步 xff0c 因此我