ResNet介绍

2023-05-16

ResNet介绍

 

 

1 简要概括

    ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。同时ResNet的推广性非常好,甚至可以直接用到InceptionNet网络中。

    ResNet的主要思想是在网络中增加了直连通道,即Highway Network的思想。此前的网络结构是性能输入做一个非线性变换,而Highway Network则允许保留之前网络层的一定比例的输出。ResNet的思想和Highway Network的思想也非常类似,允许原始输入信息直接传到后面的层中,如下图所示。

    这样的话这一层的神经网络可以不用学习整个的输出,而是学习上一个网络输出的残差,因此ResNet又叫做残差网络。

2 创新点

    提出残差学习的思想。传统的卷积网络或者全连接网络在信息传递的时候或多或少会存在信息丢失,损耗等问题,同时还有导致梯度消失或者梯度爆炸,导致很深的网络无法训练。ResNet在一定程度上解决了这个问题,通过直接将输入信息绕道传到输出,保护信息的完整性,整个网络只需要学习输入、输出差别的那一部分,简化学习目标和难度。VGGNet和ResNet的对比如下图所示。ResNet最大的区别在于有很多的旁路将输入直接连接到后面的层,这种结构也被称为shortcut或者skip connections。

3 网络结构

    在ResNet网络结构中会用到两种残差模块,一种是以两个3*3的卷积网络串接在一起作为一个残差模块,另外一种是1*1、3*3、1*1的3个卷积网络串接在一起作为一个残差模块。他们如下图所示。

    ResNet有不同的网络层数,比较常用的是50-layer,101-layer,152-layer。他们都是由上述的残差模块堆叠在一起实现的。

4 代码实现

 

#%%
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""

Typical use:

   from tensorflow.contrib.slim.nets import resnet_v2

ResNet-101 for image classification into 1000 classes:

   # inputs has shape [batch, 224, 224, 3]
   with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)):
      net, end_points = resnet_v2.resnet_v2_101(inputs, 1000)

ResNet-101 for semantic segmentation into 21 classes:

   # inputs has shape [batch, 513, 513, 3]
   with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)):
      net, end_points = resnet_v2.resnet_v2_101(inputs,
                                                21,
                                                global_pool=False,
                                                output_stride=16)
"""
import collections
import tensorflow as tf
slim = tf.contrib.slim


#namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,
#并可以用属性而不是索引来引用tuple的某个元素
#相当于创建了一个Block类,有scope,unit_fn,args属性
class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
  """A named tuple describing a ResNet block.

  Its parts are:
    scope: The scope of the `Block`.
    unit_fn: The ResNet unit function which takes as input a `Tensor` and
      returns another `Tensor` with the output of the ResNet unit.
    args: A list of length equal to the number of units in the `Block`. The list
      contains one (depth, depth_bottleneck, stride) tuple for each unit in the
      block to serve as argument to unit_fn.
  """


def subsample(inputs, factor, scope=None):
  """Subsamples the input along the spatial dimensions.

  Args:
    inputs: A `Tensor` of size [batch, height_in, width_in, channels].
    factor: The subsampling factor.
    scope: Optional variable_scope.

  Returns:
    output: A `Tensor` of size [batch, height_out, width_out, channels] with the
      input, either intact (if factor == 1) or subsampled (if factor > 1).
  """
  if factor == 1:
    return inputs
  else:
    return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)


def conv2d_same(inputs, num_outputs, kernel_size, stride, scope=None):
  """Strided 2-D convolution with 'SAME' padding.

  When stride > 1, then we do explicit zero-padding, followed by conv2d with
  'VALID' padding.

  Note that

     net = conv2d_same(inputs, num_outputs, 3, stride=stride)

  is equivalent to

     net = slim.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME')
     net = subsample(net, factor=stride)

  whereas

     net = slim.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME')

  is different when the input's height or width is even, which is why we add the
  current function. For more details, see ResnetUtilsTest.testConv2DSameEven().

  Args:
    inputs: A 4-D tensor of size [batch, height_in, width_in, channels].
    num_outputs: An integer, the number of output filters.
    kernel_size: An int with the kernel_size of the filters.
    stride: An integer, the output stride.
    rate: An integer, rate for atrous convolution.
    scope: Scope.

  Returns:
    output: A 4-D tensor of size [batch, height_out, width_out, channels] with
      the convolution output.
  """
  #conv2d_same是一个卷积后输入和输出图片大小相同的函数
  #步长为1可以直接卷积,不为1,需要计算在图片周围padding的大小再卷积
  if stride == 1:
    return slim.conv2d(inputs, num_outputs, kernel_size, stride=1,
                       padding='SAME', scope=scope)
  else:
    #kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
    pad_total = kernel_size - 1
    pad_beg = pad_total // 2
    pad_end = pad_total - pad_beg
    inputs = tf.pad(inputs,
                    [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
    return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride,
                       padding='VALID', scope=scope)


@slim.add_arg_scope
def stack_blocks_dense(net, blocks,
                       outputs_collections=None):
  """Stacks ResNet `Blocks` and controls output feature density.

  First, this function creates scopes for the ResNet in the form of
  'block_name/unit_1', 'block_name/unit_2', etc.


  Args:
    net: A `Tensor` of size [batch, height, width, channels].
    blocks: A list of length equal to the number of ResNet `Blocks`. Each
      element is a ResNet `Block` object describing the units in the `Block`.
    outputs_collections: Collection to add the ResNet block outputs.

  Returns:
    net: Output tensor 

  """
  #生成残差网络所有的堆叠,并存放在net中
  for block in blocks:
    with tf.variable_scope(block.scope, 'block', [net]) as sc:
      for i, unit in enumerate(block.args):

        with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
          unit_depth, unit_depth_bottleneck, unit_stride = unit
          net = block.unit_fn(net,
                              depth=unit_depth,
                              depth_bottleneck=unit_depth_bottleneck,
                              stride=unit_stride)
      net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
      
  return net


def resnet_arg_scope(is_training=True,
                     weight_decay=0.0001,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):
  """Defines the default ResNet arg scope.

  TODO(gpapan): The batch-normalization related default values above are
    appropriate for use in conjunction with the reference ResNet models
    released at https://github.com/KaimingHe/deep-residual-networks. When
    training ResNets from scratch, they might need to be tuned.

  Args:
    is_training: Whether or not we are training the parameters in the batch
      normalization layers of the model.
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: The moving average decay when estimating layer activation
      statistics in batch normalization.
    batch_norm_epsilon: Small constant to prevent division by zero when
      normalizing activations by their variance in batch normalization.
    batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
      activations in the batch normalization layer.

  Returns:
    An `arg_scope` to use for the resnet models.
  """
  batch_norm_params = {
      'is_training': is_training,
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      # The following implies padding='SAME' for pool1, which makes feature
      # alignment easier for dense prediction tasks. This is also used in
      # https://github.com/facebook/fb.resnet.torch. However the accompanying
      # code of 'Deep Residual Learning for Image Recognition' uses
      # padding='VALID' for pool1. You can switch to that choice by setting
      # slim.arg_scope([slim.max_pool2d], padding='VALID').
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc




@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride,
               outputs_collections=None, scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
    if depth == depth_in:
      shortcut = subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                             normalizer_fn=None, activation_fn=None,
                             scope='shortcut')

    residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = conv2d_same(residual, depth_bottleneck, 3, stride,
                                        scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           normalizer_fn=None, activation_fn=None,
                           scope='conv3')

    output = shortcut + residual

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.name,
                                            output)


def resnet_v2(inputs,
              blocks,
              num_classes=None,
              global_pool=True,
              include_root_block=True,
              reuse=None,
              scope=None):
  """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.


  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'
    with slim.arg_scope([slim.conv2d, bottleneck,
                         stack_blocks_dense],
                        outputs_collections=end_points_collection):
      net = inputs
      if include_root_block:
        # We do not include batch normalization or activation functions in conv1
        # because the first ResNet unit will perform these. Cf. Appendix of [2].
        with slim.arg_scope([slim.conv2d],
                            activation_fn=None, normalizer_fn=None):
          net = conv2d_same(net, 64, 7, stride=2, scope='conv1')
        net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
      net = stack_blocks_dense(net, blocks)
      # This is needed because the pre-activation variant does not have batch
      # normalization or activation functions in the residual unit output. See
      # Appendix of [2].
      net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')
      if global_pool:
        # Global average pooling.
        net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
      if num_classes is not None:
        net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                          normalizer_fn=None, scope='logits')
      # Convert end_points_collection into a dictionary of end_points.
      end_points = slim.utils.convert_collection_to_dict(end_points_collection)
      if num_classes is not None:
        end_points['predictions'] = slim.softmax(net, scope='predictions')
      return net, end_points



def resnet_v2_50(inputs,
                 num_classes=None,
                 global_pool=True,
                 reuse=None,
                 scope='resnet_v2_50'):
  """ResNet-50 model of [1]. See resnet_v2() for arg and return description."""
  blocks = [
      Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)


def resnet_v2_101(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_101'):
  """ResNet-101 model of [1]. See resnet_v2() for arg and return description."""
  blocks = [
      Block(
          'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)


def resnet_v2_152(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_152'):
  """ResNet-152 model of [1]. See resnet_v2() for arg and return description."""
  blocks = [
      Block(
          'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)


def resnet_v2_200(inputs,
                  num_classes=None,
                  global_pool=True,
                  reuse=None,
                  scope='resnet_v2_200'):
  """ResNet-200 model of [2]. See resnet_v2() for arg and return description."""
  blocks = [
      Block(
          'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
      Block(
          'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]),
      Block(
          'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
      Block(
          'block4', bottleneck, [(2048, 512, 1)] * 3)]
  return resnet_v2(inputs, blocks, num_classes, global_pool,
                   include_root_block=True, reuse=reuse, scope=scope)

  
from datetime import datetime
import math
import time
def time_tensorflow_run(session, target, info_string):
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i % 10:
                print ('%s: step %d, duration = %.3f' %
                       (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
           (datetime.now(), info_string, num_batches, mn, sd))
    
batch_size = 32
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(resnet_arg_scope(is_training=False)):
   net, end_points = resnet_v2_152(inputs, 1000)
  
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)  
num_batches=100
time_tensorflow_run(sess, net, "Forward") 

 

5 参考文献

 

[1]黄文坚,唐源.TensorFlow实战[M].北京:电子工业出版社,2017.

[2]https://arxiv.org/abs/1512.03385

[3]https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py

 

插播:

阿里云-城市大脑团体需要NLP算法工程师,校招/社招/实习均可,可私信或联系wuwen.lw@alibaba-inc.com

 

 

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

ResNet介绍 的相关文章

随机推荐

  • C++中struct和class

    在C 43 43 中我们可以看到struct和class的区别并不是很大 xff0c 两者之间有很大的相似性 那么为什么还要保留struct 这是因为C 43 43 是向下兼容的 xff0c 因此C 43 43 中保留了很多C的东西 一 首
  • Linux中的进程栈和线程栈

    转载自 xff1a Linux中的进程栈和线程栈 知乎 1 进程栈 进程栈是属于用户态栈 xff0c 和进程虚拟地址空间 Virtual Address Space 密切相关 那我们先了解下什么是虚拟地址空间 xff1a 在 32 位机器下
  • Linux内存管理(二):PTMalloc

    1 ptmalloc简介 2 内存管理数据结构 3 内存分配 4 内存回收 5 配置选项 6 注意事项 1 ptmalloc简介 Linux 中 malloc 的早期版本是由 Doug Lea 实现的 xff0c 它有一个重要问题就是在并行
  • P问题、NP问题、NP完全问题和NP难问题

    在讲P类问题之前先介绍两个个概念 xff1a 多项式 xff0c 时间复杂度 知道这两概念的可以自动跳过这部分 1 多项式 xff1a axn bxn 1 43 c 恩 就是长这个样子的 xff0c 叫x最高次为n的多项式 咳咳 xff0c
  • 电容基本知识

    旁路电容 xff0c 耦合电容 xff0c 电容不同类型的使用范围 在模拟和数字PCB设计中 xff0c 旁路或去耦电容 0 1uF 应尽量靠近器件 放置 供电电源去耦电容 10uF 应放置在电路板的电源线入口处 所有情 况下 xff0c
  • 最长递增子序列的三种算法

    转载自 xff1a http qiemengdao iteye com blog 1660229 最长递增子序列 问题 给定一个长度为N的数组 xff0c 找出一个最长的单调自增子序列 xff08 不一定连续 xff0c 但是顺序不能乱 x
  • 树莓派手动指定静态IP和DNS 终极解决大法

    在把玩树莓派的过程中 xff0c 往往需要手动给它设定一个静态的IP地址 xff0c 一来可以防范DHCP自动分配的IP来回变动 xff0c 导致远程SSH时常无法连接 xff1b 二来还可以提高树莓派的网络连接速度 对此菲菲君在网上查了很
  • Anroid面试专题(十二):图片大小的优化 及 三级缓存

    面试官 xff1a 你在项目中处理过图片吗 xff0c 说一下你是如何对它做优化的 xff0c 及三级缓存是什么 xff1f 我们可以这样一步一步来回答 xff1a 1 一张图的大小是怎么计算的 要回答这个问题 xff0c 我们要先从图片说
  • UART和RS232/RS485的关系是什么?

    串口通讯是电子工程师和嵌入式开发工程师面对的最基本问题 xff0c RS232则是其中最简单最常用的通讯方式 但是初学者往往搞不清有关的名词如UART和RS232或RS485之间是什么关系 xff0c 因为它们经常被放到语句中同等的位置使用
  • TensorBoard的使用

    介绍 使用 Tensorboard 是TF 的可视化工具 xff0c 它通过对Tensoflow程序运行过程中输出的日志文件进行可视化Tensorflow程序的运行状态 xff0c 如下所示 SCALARS 对标量数据进行汇总和记录 使用方
  • Tensorflow 多 GPU 训练

    介绍 TensorFlow中的并行主要分为模型并行和数据并行 模型并行需要根据不同模型设计不同的并行方式 xff0c 其主要原理是将模型中不同计算节点放在不同硬件资源上运算 比较通用的且能简便地实现大规模并行的方式是数据并行 xff0c 其
  • Hadoop 各组件介绍

    转自 https www cnblogs com klb561 p 9085615 html Hadoop是一个由Apache基金会所开发的分布式系统基础架构 用户可以在不了解分布式底层细节的情况下 xff0c 开发分布式程序 充分利用集群
  • 8、解决Linux无法上网的各种问题

    最近发现Linux重新开机后无法上网 xff0c 不仅不能ping通windows主机也不能上外网 ifconfig后eth0也没有分配IP地址 xff0c 总之各种问题都被我碰到了 现在来一一解决 xff01 1 没有分配到IP地址 开机
  • 解决开发板ping不通主机和虚拟机的问题

    使用TFTP和NFS从虚拟机下载文件或者制作根文件系统的前提是开发板能够ping同虚拟机 xff01 相信很多人都像我一样有过ping不通的经历 xff0c 经过2 3天的研究和实验后终于把问题解决了 xff0c 而且屡试不爽 最后得出结论
  • USB摄像头驱动配置及V4L2编程

    1 摄像头驱动开发 1 1 摄像头软件系统架构 摄像头系统架构分为四层 xff1a 摄像头 支持V4L2的摄像头驱动 V4L2核心 应用程序 V4L2核心是Linux系统自带的组件 xff0c 它可以屏蔽摄像头驱动层的差异 xff0c 不管
  • 机器学习中的五种回归模型及其优缺点

    转自https blog csdn net Katherine hsr article details 79942260 好像有部分公式不能显示 xff0c 请查看原博客 本文将会介绍五种常见的回归模型的概念及其优缺点 xff0c 包括线性
  • VGGNet介绍

    VGGNet介绍 1 简要概括 VGGNet由牛津大学计算机视觉组合和Google DeepMind公司研究员一起研发的深度卷积神经网络 它探索了卷积神经网络的深度和其性能之间的关系 xff0c 通过反复的堆叠3 3的小型卷积核和2 2的最
  • PX4编译问题总结

    PX4在变编译的时候总会碰到很多问题 有些问题根据提示就可以解决 xff0c 有些问题却有点麻烦 1 找不到python jinja2模块 CMake Error at usr share cmake 3 2 Modules FindPac
  • 面试专题(十三):Service 与 IntentService

    1 Service 与 IntentService区别 Service不是运行在独立的线程 xff0c 所以不建议在Service中编写耗时的逻辑和操作 xff0c 否则会引起ANR IntentService 1 可用于执行后台耗时的任务
  • ResNet介绍

    ResNet介绍 1 简要概括 ResNet xff08 Residual Neural Network xff09 由微软研究院的Kaiming He等四名华人提出 xff0c 通过使用ResNet Unit成功训练出了152层的神经网络