多核处理器的关键技术

2023-05-16

英特尔的cpu是从前代gt-atom一路供货到第7代,想必日常使用不会有太大区别,而在系统之外可能存在一些散热方面的问题。而上市越早的处理器,硬件供货越好,可能在某些特殊时间段会出现不足,从而导致售后问题。据说m6s的官方一个批次仅支持至强e3v3,和2600x不兼容。已经更新4代,性能也很接近2600x,ipc设定20左右。如果2600x和2600x对比应该是同频cpu,但同样的双核a10和a8a9/a12性能其实差不多,三级缓存多得多,能用上两倍的一些性能。而且2600x工艺提升了很多。2600x比2600卖的便宜,供货量还少,必然在系统性能和一些硬件易损性上弱于2600x,比如维修时供电会不够用、需要用工具把2600x接头搞松散因为2600x提高了供电模块。

2600x的v8fast显示为供电v8单路,v7fast显示供电v6单路。这样的话v8的v7功耗要大于v8,超频更加难受。cpu性能直接就是吊打2600x,2700x是2600x的全功能的升级版。功耗要大,供电也会随之加强,不然会拖累intel的供电功能。其实2700x的供电是单路的。

2600x的核心数更多,核心数决定核心频率。核心数越多,越能调度更多的线程。2600x是两颗核心和一颗显卡,和2600比,供电更好,有更多的桥接线。2600性能比2600x低1000,性能和2600x一样,功耗会大上1000,买2600x,还不如买2600,因为2600x有12nm的核心制程了。22nm工艺,ah-inc,频率不会变化太大。3500x也是22nm。同频比2600x要高一百。同频5500比7500高100。1800x的供电和2600的差不多,高频比不了。更重要的是22nm工艺,2700x的制程比不了。

加上skylake核心制程上14nm,性能直接翻番。4000k和3500x是同频,是2700x的升级版。v8+v8是同频不变,是主频同频。22nmip带来很多优势。感觉写评论的你自己都不知道当初评论里说的天花乱坠。就是不说结论。上一代i57500处理器和华硕微星b150i同架构核心供电可以达到2600x的七八成,这代i77700不知道是第几代工艺,性能据说跌到2000出头的样子,估计也跌到1500上下。

推荐一套方案,i77700+b150i+z270主板,实际核心频率最高1750mhz,满载3000频率。2000块可以搞定。因为华硕b150i主板供电稍好,z270主板模具设计好,马甲更多,功耗可以控制的更好。所以我现在只推荐供电不是很好的主板。3000价位配一套这个,供电好的2500左右一套。

百度安全验证

与单核处理器相比,多核处理器在体系结构、软件、功耗和安全性设计等方面面临着巨大的挑战,但也蕴含着巨大的潜能。

CMP和SMT一样,致力于发掘计算的粗粒度并行性。CMP可以看做是随着大规模集成电路技术的发展,在芯片容量足够大时,就可以将大规模并行处理机结构中的SMP(对称多处理机)或DSM(分布共享处理机)节点集成到同一芯片内,各个处理器并行执行不同的线程或进程。在基于SMP结构的单芯片多处理机中,处理器之间通过片外Cache或者是片外的共享存储器来进行通信。而基于DSM结构的单芯片多处理器中,处理器间通过连接分布式存储器的片内高速交叉开关网络进行通信。由于SMP和DSM已经是非常成熟的技术了,CMP结构设计比较容易,只是后端设计和芯片制造工艺的要求较高而已。正因为这样,CMP成为了最先被应用于商用CPU的“未来”高性能处理器结构。

虽然多核能利用集成度提高带来的诸多好处,让芯片的性能成倍地增加,但很明显的是原来系统级的一些问题便引入到了处理器内部。

1  核结构研究: 同构还是异构

CMP的构成分成同构和异构两类,同构是指内部核的结构是相同的,而异构是指内部的核结构是不同的。为此,面对不同的应用研究核结构的实现对未来微处理器的性能至关重要。核本身的结构,关系到整个芯片的面积、功耗和性能。怎样继承和发展传统处理器的成果,直接影响多核的性能和实现周期。同时,根据Amdahl定理,程序的加速比决定于串行部分的性能,所以,从理论上来看似乎异构微处理器的结构具有更好的性能。

核所用的指令系统对系统的实现也是很重要的,采用多核之间采用相同的指令系统还是不同的指令系统,能否运行操作系统等,也将是研究的内容之一。

2  程序执行模型

多核处理器设计的首要问题是选择程序执行模型。程序执行模型的适用性决定多核处理器能否以最低的代价提供最高的性能。程序执行模型是编译器设计人员与系统实现人员之间的接口。编译器设计人员决定如何将一种高级语言程序按一种程序执行模型转换成一种目标机器语言程序; 系统实现人员则决定该程序执行模型在具体目标机器上的有效实现。当目标机器是多核体系结构时,产生的问题是: 多核体系结构如何支持重要的程序执行模型?是否有其他的程序执行模型更适于多核的体系结构?这些程序执行模型能多大程度上满足应用的需要并为用户所接受?

3  Cache设计: 多级Cache设计与一致性问题

处理器和主存间的速度差距对CMP来说是个突出的矛盾,因此必须使用多级Cache来缓解。目前有共享一级Cache的CMP、共享二级Cache的CMP以及共享主存的CMP。通常,CMP采用共享二级Cache的CMP结构,即每个处理器核心拥有私有的一级Cache,且所有处理器核心共享二级Cache。

Cache自身的体系结构设计也直接关系到系统整体性能。但是在CMP结构中,共享Cache或独有Cache孰优孰劣、需不需要在一块芯片上建立多级Cache,以及建立几级Cache等等,由于对整个芯片的尺寸、功耗、布局、性能以及运行效率等都有很大的影响,因而这些都是需要认真研究和探讨的问题。

另一方面,多级Cache又引发一致性问题。采用何种Cache一致性模型和机制都将对CMP整体性能产生重要影响。在传统多处理器系统结构中广泛采用的Cache一致性模型有: 顺序一致性模型、弱一致性模型、释放一致性模型等。与之相关的Cache一致性机制主要有总线的侦听协议和基于目录的目录协议。目前的CMP系统大多采用基于总线的侦听协议。

4  核间通信技术

CMP处理器的各CPU核心执行的程序之间有时需要进行数据共享与同步,因此其硬件结构必须支持核间通信。高效的通信机制是CMP处理器高性能的重要保障,目前比较主流的片上高效通信机制有两种,一种是基于总线共享的Cache结构,一种是基于片上的互连结构。

总线共享Cache结构是指每个CPU内核拥有共享的二级或三级Cache,用于保存比较常用的数据,并通过连接核心的总线进行通信。这种系统的优点是结构简单,通信速度高,缺点是基于总线的结构可扩展性较差。

基于片上互连的结构是指每个CPU核心具有独立的处理单元和Cache,各个CPU核心通过交叉开关或片上网络等方式连接在一起。各个CPU核心间通过消息通信。这种结构的优点是可扩展性好,数据带宽有保证; 缺点是硬件结构复杂,且软件改动较大。

也许这两者的竞争结果不是互相取代而是互相合作,例如在全局范围采用片上网络而局部采用总线方式,来达到性能与复杂性的平衡。

5  总线设计

传统微处理器中,Cache不命中或访存事件都会对CPU的执行效率产生负面影响,而总线接口单元(BIU)的工作效率会决定此影响的程度。当多个CPU核心同时要求访问内存或多个CPU核心内私有Cache同时出现Cache不命中事件时,BIU对这多个访问请求的仲裁机制以及对外存储访问的转换机制的效率决定了CMP系统的整体性能。因此寻找高效的多端口总线接口单元(BIU)结构,将多核心对主存的单字访问转为更为高效的猝发(burst)访问; 同时寻找对CMP处理器整体效率最佳的一次Burst访问字的数量模型以及高效多端口BIU访问的仲裁机制将是CMP处理器研究的重要内容。

6  操作系统设计: 任务调度、中断处理、同步互斥

对于多核CPU,优化操作系统任务调度算法是保证效率的关键。一般任务调度算法有全局队列调度和局部队列调度。前者是指操作系统维护一个全局的任务等待队列,当系统中有一个CPU核心空闲时,操作系统就从全局任务等待队列中选取就绪任务开始在此核心上执行。这种方法的优点是CPU核心利用率较高。后者是指操作系统为每个CPU内核维护一个局部的任务等待队列,当系统中有一个CPU内核空闲时,便从该核心的任务等待队列中选取恰当的任务执行,这种方法的优点是任务基本上无需在多个CPU核心间切换,有利于提高CPU核心局部Cache命中率。目前多数多核CPU操作系统采用的是基于全局队列的任务调度算法。

多核的中断处理和单核有很大不同。多核的各处理器之间需要通过中断方式进行通信,所以多个处理器之间的本地中断控制器和负责仲裁各核之间中断分配的全局中断控制器也需要封装在芯片内部。

另外,多核CPU是一个多任务系统。由于不同任务会竞争共享资源,因此需要系统提供同步与互斥机制。而传统的用于单核的解决机制并不能满足多核,需要利用硬件提供的“读-修改-写”的原子操作或其他同步互斥机制来保证。

7  低功耗设计

半导体工艺的迅速发展使微处理器的集成度越来越高,同时处理器表面温度也变得越来越高并呈指数级增长,每三年处理器的功耗密度就能翻一番。目前,低功耗和热优化设计已经成为微处理器研究中的核心问题。CMP的多核心结构决定了其相关的功耗研究是一个至关重要的课题。

低功耗设计是一个多层次问题,需要同时在操作系统级、算法级、结构级、电路级等多个层次上进行研究。每个层次的低功耗设计方法实现的效果不同——抽象层次越高,功耗和温度降低的效果越明显。

8  存储器墙

为了使芯片内核充分地工作,最起码的要求是芯片能提供与芯片性能相匹配的存储器带宽,虽然内部Cache的容量能解决一些问题,但随着性能的进一步提高,必须有其他一些手段来提高存储器接口的带宽,如增加单个管脚带宽的DDR、DDR2、QDR、XDR等。同样,系统也必须有能提供高带宽的存储器。所以,芯片对封装的要求也越来越高,虽然封装的管脚数每年以20%的数目提升,但还不能完全解决问题,而且还带来了成本提高的问题,为此,怎样提供一个高带宽,低延迟的接口带宽,是必须解决的一个重要问题。

9  可靠性及安全性设计

随着技术革新的发展,处理器的应用渗透到现代社会的各个层面,但是在安全性方面却存在着很大的隐患。一方面,处理器结构自身的可靠性低下,由于超微细化与时钟设计的高速化、低电源电压化,设计上的安全系数越来越难以保证,故障的发生率逐渐走高。另一方面,来自第三方的恶意攻击越来越多,手段越来越先进,已成为具有普遍性的社会问题。现在,可靠性与安全性的提高在计算机体系结构研究领域备受注目。

今后,CMP这类处理器芯片内有多个进程同时执行的结构将成为主流,再加上硬件复杂性、设计时的失误增加,使得处理器芯片内部也未必是安全的,因此,安全与可靠性设计任重而道远。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

多核处理器的关键技术 的相关文章

  • SENT信号介绍

    Vehicle攻城狮 The people who are crazy enough to think they can change the world are the ones who do SENT背景介绍 提到车载总线 xff0c
  • Linux 日志管理

    常用日志文件 系统日志是由一个名为syslog的服务管理的 xff0c 如以下日志文件都是由syslog日志服务驱动的 xff1a var log boot log xff1a 录了系统在引导过程中发生的事件 xff0c 就是Linux系统
  • SPI 通讯协议

    Cuitbasics 汽车ECU设计 2 2 当您将微控制器连接到传感器 xff0c 显示器或其他模块时 xff0c 您是否考虑过这两种设备是如何相互通信的 xff1f 他们到底在说什么 xff1f 事实上电子设备之间的通信就像人类之间的交
  • UART串口通讯

    UART代表通用异步接收器 发送器也称为串口通讯 xff0c 它不像SPI和I2C这样的通信协议 xff0c 而是微控制器中的物理电路或独立的IC UART的主要目的是发送和接收串行数据 xff0c 其最好的优点是它仅使用两条线在设备之间传
  • 一文搞懂AUTOSAR的DEM模块

    Dem全称为Diagnostic Event Manager xff0c 负责故障事件的处理 故障数据的存储和管理 简单说其功能是故障事件确认前的故障debounce xff0c 故障事件确认时的故障数据存储 xff0c 故障发生后的故障老
  • linux父子进程问题——孤儿进程与僵尸进程[总结]

    今天遇到一个linux进程启动时指定Max open files不对的问题 xff0c 导致程序建立socket异常 xff0c 进而导致fullgc问题 xff0c 影响正常服务 所以顺带又温习了下linux下的父子进程的特性 孤儿进程与
  • C++11/14/17一些好用新特性自己整理下

    1 override xff1a 子类继承父类的时候 xff0c 子类虚函数名字写错了或者参数列表不匹配会变成另外一个函数编译器无法判断对错 xff0c 和你写不写virtual也没关系 xff0c 这时候可以在虚函数结尾加上overrid
  • vector中emplace_back方法的用途

    在写代码的过程中 xff0c CLion提醒我把 span style background color ffd900 push back span 方法替换成 span style background color ffd900 empl
  • constexper+const+常量表达式

    常量表达式 xff08 const expression xff09 是指值不会改变并且在编译过程就能得到计算结果的表达式 显然 xff0c 字面值属于常量表达式 xff0c 用常量表达式初始化的 const 对象也是常量表达式 一个对象
  • 这篇 CPU Cache,估计也没人看

    无论你写什么样的代码都会交给 CPU 来执行 xff0c 所以 xff0c 如果你想写出性能比较高的代码 xff0c 这篇文章中提到的技术还是值得认真学习的 另外 xff0c 千万别觉得这些东西没用 xff0c 这些东西非常有用 xff0c
  • 每天一个 Linux 命令

    https blog csdn net k346k346 category 9267835 html uptime 命令 1 命令简介 uptime 用于显示系统总共运行了多长时间和系统的平均负载 无选项 uptime 命令会显示一行信息
  • Docker 安装Jenkins并配置Maven

    系统环境 系统版本 xff1a Centos7 9 docker安装参考此链接 xff1a https blog csdn net clover661 article details 122226083 下载docker时候如果报错参考 x
  • 一文详解自动驾驶的运行设计域(ODD)| 自动驾驶系列

    一文详解自动驾驶的运行设计域 xff08 ODD xff09 n 自动驾驶系列 2021年4月30日 xff0c SAE发布了第四版J3016 驾驶自动化分级 xff0c 这是即2014年1月16日 2016年9月30日 2018年6月15
  • QNX BSP分析

    QNX相关历史文章 xff1a QNX简介QNX Neutrino微内核QNX IPC机制QNX进程管理器QNX资源管理器QNX字符I OQNX之编写资源管理器 xff08 一 xff09 QNX之编写资源管理器 xff08 二 xff09
  • SOA面向服务的分布式架构详解

    导语 xff1a SOA作为一种面向服务的架构 xff0c 是一种软件架构设计的模型和方法论 从业务角度来看 xff0c 一切以最大化 服务 的价值为 出发点 xff0c SOA利用企业现有的各种软件体系 xff0c 重新整合并构建起一套新
  • 自动驾驶软件架构之:中间件与SOA(一)

    本文是将中间件作为一个专题 xff0c 专门展开进行详细的分析和讨论 中间件相关技术在计算机分布式系统中发展了很多年 xff0c 尤其在互联网服务 大型商业系统中得到广泛使用 随着智能网联汽车的发展 xff0c 现代汽车也逐步增加了以太网支
  • 嵌入式系统BSP基础知识

    嵌入式系统BSP基础知识 板级支持包 BSP 是定义如何支持特定硬件设备 设备组或硬件平台的信息集合 BSP 包括有关设备上存在的硬件功能的信息和内核配置信息以及所需的任何其他硬件驱动程序 除了用于基本和可选平台功能的通用 Linux 软件
  • constexpr

    constexpr 标志返回值或者其他表达式是常量 xff0c 在编译时就会被计算出来 这个关键字常被用来 C 43 43 const 和 constexpr 的区别 xff1f 知乎 include lt iostream gt usin
  • inline namespace

    include lt iostream gt using namespace std namespace ALL namespace V2014 void fun int num cout lt lt 34 int 34 lt lt 34
  • 进程与线程

    对于操作系统来说 xff0c 一个任务就是一个进程 xff08 Process xff09 xff0c 比如打开一个浏览器就是启动一个浏览器进程 xff0c 打开一个记事本就启动了一个记事本进程 xff0c 打开两个记事本就启动了两个记事本

随机推荐

  • 详解SOME/IP协议文档

    以下内容来源于AutoSar官网的AUTOSAR PRS SOMEIPProtocol文档 详解SOME IP协议文档 2 知乎 以下内容来源于AutoSar官网的AUTOSAR PRS SOMEIPProtocol文档 SOME IP P
  • AP AUTOSAR——Update and Configuration Management UCM

    15 Update and Configuration Management 15 1 What is Update and Configuration Management 更新和配置管理是Adaptive Platform Servic
  • 基于Docker安装Jenkins并实现CI/CD实战部署

    本实践介绍了利用Jenkins和docker技术 xff0c 如何实现CI CD的各环节的步骤 xff0c 包括环境准备 xff0c 代码提交 xff0c 编译程序 xff0c 构建镜像 xff0c 部署一套完整的安装部署流程 工具介绍 x
  • 左值引用与右值引用

    include lt iostream gt using namespace std void change int amp rnum 引用就是变量名的别名 rnum 61 111 c 43 43 中能用引用的地方 xff0c 就不要使用指
  • C++ 11的移动语义

    目录 可拷贝和可移动的概念 移动构造函数和移动赋值函数 小结移动构造和移动赋值std move 使用 std move 实现一个高效的 swap 函数Move and swap 技巧参考 可拷贝和可移动的概念 在面向对象中 xff0c 有的
  • UDS-统一诊断服务

    什么是诊断服务 xff1f 在还没有诊断服务的时候 xff0c 如果车辆故障 xff0c 需要有经验的师傅长时间的摸排查找 xff0c 费时费力 而车辆的ECU节点有了诊断模块后 xff0c 就具有了诊断功能 xff0c 这样车辆如果有了故
  • AP AUTOSAR——Network Management

    16 Network Management 16 1 What is Network Management 网络管理是Adaptive Platform Services中的一个功能集群 作为AP AUTOSAR平台的服务 xff0c 网络
  • AP AUTOSAR——Security Management

    11 Security Management 11 1 What is Security Management 安全管理是自适应平台体系结构中的一个功能集群 作为一个功能集群 xff0c 安全管理由多个模块组成 xff0c 这些模块向在Ad
  • 如何制作S32V234的Linux5.x版本BSP

    脚本是编译S32v Linux5 x版本bsp文件的流程 官方也有这个指导说明文档 xff0c 主要是第2 3章内容 xff0c 可以参考着执行 1 下面描述的所有步骤都已在Ubuntu 20 04LTS上 xff08 本机或通过虚拟机 x
  • C++经典面试题100例及答案

    1 面向对象的程序设计思想是什么 答 xff1a 把数据结构和对数据结构进行操作的方法封装形成一个个的对象 2 什么是类 答 xff1a 把一些具有共性的对象归类后形成一个集合 xff0c 也就是所谓的类 3 对象都具有的两方面特征是什么
  • C++面试100题,1——40

    C与c 43 43 有什么不同 xff1f 在c 43 43 中能使用引用就不要使用指针 xff0c 要改变一个一级指针就要用一个二级指针 要改变一个二级指针就要用一个三级指针 xff0c 会变得越来越复杂 A类中的func1是虚函数 xf
  • (TDA4 BSP )Texas Instruments Jacinto 7 J721E (DRA829/TDA4xM) BSP 如何制作?

    1 1 1 Download and Install the SDK Processor SDK Linux for J721e Documentation https software dl ti com jacinto7 esd pro
  • 解决Linux 环境 GLIBCXX_3.4.15‘ not found问题

    升级Centos系统之后 xff0c 运行filezilla时 xff0c 出现如下错误的提示信息 xff1a filezilla usr lib libstdc 43 43 so 6 version 96 GLIBCXX 3 4 15 3
  • 两台Linux服务器之间传输文件的四种方法(转载)

    在日常服务器租用中 xff0c 有时需要将文件从一台服务器传到另一台服务器 xff0c 下面给大家介绍四种linux服务器之间传输文件方式 scp 优点 简单方便 xff0c 安全可靠 xff1b 支持限速参数 缺点 不支持排除目录 用法
  • 任务间通信 | 邮箱、消息队列

    本文分享自中移OneOS公众号 任务间通信 上篇讲解了任务间同步 xff0c 在本篇中主要讲解任务间通信机制 xff0c 并对邮箱及消息队列进行详细介绍 通过对其概念 详细设计 接口设计等的讲解帮助开发者更好的理解其在操作系统中的应用 任务
  • c++ 条件变量的使用,实战

    include lt iostream gt include lt thread gt include lt mutex gt include lt condition variable gt using namespace std 线程通
  • SOA架构和微服务架构的区别

    1 SOA架构和微服务架构的区别 首先SOA和微服务架构一个层面的东西 xff0c 而对于ESB和微服务网关是一个层面的东西 xff0c 一个谈到是架构风格和方法 xff0c 一个谈的是实现工具或组件 1 SOA xff08 Service
  • 浅谈AP autosar 之 runtime 基础

    AP Autosar Architecture overview AP autosar在SOC 中的位置 xff0c 起到的作用 下面图可以看出 xff0c AP autosar封装了操作系统的接口 xff0c 封装了功能安全 xff0c
  • 「冰羚」— 撑起自动驾驶未来的“中间件”

    每当谈到自动驾驶的软件开发 xff0c 人们首先想到的 xff0c 是深不可测的人工智能算法 xff0c 是各种感知融合 xff0c 是各类路径规划 但是 xff0c 就算是再智能再高深的算法 xff0c 如果没有底层操作系统的支持 xff
  • 多核处理器的关键技术

    英特尔的cpu是从前代gt atom一路供货到第7代 xff0c 想必日常使用不会有太大区别 xff0c 而在系统之外可能存在一些散热方面的问题 而上市越早的处理器 xff0c 硬件供货越好 xff0c 可能在某些特殊时间段会出现不足 xf