STM32CubeMX配置freertos配置任务(一)

2023-05-16

使用STM32CubeMX 配置Freertos 生成一个任务点亮LED
stm32cubemx
STM32CubeMX 是 ST 意法半导体近几年来大力推荐的STM32 芯片图形化配置工具, 允许用户使用图形化向导生成C 初始化代码,可以大大减轻开发工作,时间和费用。STM32CubeMX几乎覆盖了STM32 全系列芯片。

1.新建项目文件
在这里插入图片描述
2.本例子需要使用到的外设只有GPIO点亮LED
在这里插入图片描述
LED端口为PC13 ,点击PC13选择GPIO_OUTPUT
配置GPIO端口为输出。

3.配置Freertos
在这里插入图片描述
选择middleware ,点击freertos interface 选择CMSISV1 或者V2
在这里插入图片描述
选择task and Queue,点击add
在这里插入图片描述
在出现的对话框中对任务进行设置,若无其他需求可以点击确定使用默认配置。
在这里插入图片描述

在这里插入图片描述
点击project manager
设置项目名称,目录
tool-Chain选择MDK-ARM(如果你用keil5开发的话)
在这里插入图片描述
勾选code Generator 如图所示的条目
在这里插入图片描述
点击生成代码。
使用MDK 打开所创建的项目(刚才设了项目目录)

打开main.c

int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Call init function for freertos objects (in freertos.c) */
  MX_FREERTOS_Init();
  /* Start scheduler */
  osKernelStart();

  /* We should never get here as control is now taken by the scheduler */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);

  /*Configure GPIO pin : PC13 */
  GPIO_InitStruct.Pin = GPIO_PIN_13;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

}

以上是自动生成的main函数
在函数 MX_FREERTOS_Init(); 中是对用户函数的初始化,也就是创建任务阶段。
这里会比较晕,和freertos 内核代码的样式会有很大区别,都是CMSIS定义的又包一层。

void MX_FREERTOS_Init(void) {
  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes, ... */
  /* USER CODE END RTOS_MUTEX */

  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */

  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones, ... */
  /* USER CODE END RTOS_TIMERS */

  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */

  /* Create the thread(s) */
  /* definition and creation of defaultTask */
  osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
  defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);

  /* definition and creation of myTask02 */
  osThreadDef(myTask02, StartTask02, osPriorityIdle, 0, 128);
  myTask02Handle = osThreadCreate(osThread(myTask02), NULL);

  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */

}

osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
使用宏定义创建了一个任务结构体,对结构体进行初始化。

#define osThreadDef(name, thread, priority, instances, stacksz)  \
const osThreadDef_t os_thread_def_##name = \
{ #name, (thread), (priority), (instances), (stacksz)}

os_pthread pthread; ///< start address of thread function
这个就是函数的入口
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
这行目的是把刚才创建的任务结构体带入到任务的创建函数中
osThreadCreate 调用Freertos 的任务创建函数。
StartDefaultTask
StartTask02
一个是系统默认创建的任务,一个是我们STM32CubeMX中创建的任务。
在我们创建的函数中加入LED翻转

void StartTask02(void const * argument)
{
  /* USER CODE BEGIN StartTask02 */
  /* Infinite loop */
  for(;;)
  {
    osDelay(300);
	HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);
  }
  /* USER CODE END StartTask02 */
}

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

STM32CubeMX配置freertos配置任务(一) 的相关文章

  • 【FreeRTOS开发问题】FreeRTOS内存溢出

    FreeRTOS内存溢出 如下图所示 FreeRTOS编译完成后可以看到 系统提示无法分配内存到堆 Objects Template axf Error L6406E No space in execution regions with A
  • FreeRTOS系列

    1 RTOS简介 RTOS全称为 Real Time Operation System 即实时操作系统 RTOS强调的是实时性 又分为硬实时和软实时 硬实时要求在规定的时间内必须完成操作 不允许超时 而软实时里对处理过程超时的要求则没有很严
  • FreeRTOS学习笔记<中断>

    中断概念 Cortex M的NVIC最多支持240个IRQ 中断请求 1个不可屏蔽中断 NMI 1个Systick 滴答定时器 定时器中断和多个系统异常 Cortex M处理器有多个用于管中断和异常的可编程寄存器 这些寄存器大多数都在 NV
  • RT-Thread 应用篇 — 在STM32L051上使用 RT-Thread (二、无线温湿度传感器 之 CubeMX配置)

    应用篇 在STM32L051上使用RT Thread 第二篇 使用STM32CubeMX 进行对应外设配置 同时做一些简单测试 目录 前言 一 使用 STM32CubeMX 配置 1 1 基础步骤 1 2 修改配置 1 3 踩坑记录 二 初
  • VSCode搭建STM32开发环境

    废话不多说 直接步入正题 所需软件如下 GNU Arm Embedded Toolchain Mingw w64 make openocd STM32CubeMx VSCode 一 环境篇 1 GNU Arm Embedded Toolch
  • FreeRTOS+CubeMX系列第一篇——初识FreeRTOS

    文章目录 一 关于FreeRTOS 二 FreeRTOS的特点 三 如何在CubeMX上配置FreeRTOS 四 FreeRTOS文档资料 五 同系列博客 一 关于FreeRTOS 1 什么是FreeRTOS FreeRTOS是一个迷你的实
  • freeRTOS使用uxTaskGetStackHighWaterMark函数查看任务堆栈空间的使用情况

    摘要 每个任务都有自己的堆栈 堆栈的总大小在创建任务的时候就确定了 此函数用于检查任务从创建好到现在的历史剩余最小值 这个值越小说明任务堆栈溢出的可能性就越大 FreeRTOS 把这个历史剩余最小值叫做 高水位线 此函数相对来说会多耗费一点
  • FreeRTOS基础五:软件定时器

    软件定时器简介 软件定时器的作用 在指定的时间到来时执行指定的函数 或者以某个频率周期性地执行某个函数 被执行的函数叫做软件定时器回调函数 软件定时器由FreeRTOS内核实现 不需要硬件支持 软件定时器只有在软件定时器回调函数被调用时才需
  • stm32f103zet6移植标准库的sdio驱动

    sdio移植 st官网给的标准库有给一个用于st出的评估板的sdio外设实现 但一是文件结构有点复杂 二是相比于国内正点原子和野火的板子也有点不同 因此还是需要移植下才能使用 当然也可以直接使用正点原子或野火提供的实例 但为了熟悉下sdio
  • FreeRTOS学习(三)开关中断

    声明及感谢 跟随正点原子资料学习 在此作为学习的记录和总结 环境 keil stm32f103 背景知识 Cotex M3的NVIC最多支持240个IRQ 中断请求 1个不可屏蔽 NMI 1个Systick 滴答定时器 Cortex M处理
  • FreeRTOS之事件

    FreeRTOS之事件 声明 本人按照正点原子的FreeRTOS例程进行学习的 欢迎各位大佬指责和批评 谢谢 一 事件定义 事件 事件集 与高数上的集合意义差不多 事件啊 其实是实现任务间通信的机制 主要用于实现多任务间的同步 但是事件类型
  • Arduino IDE将FreeRTOS用于STM32

    介绍 适用于STM32F103C8的FreeRTOS STM32F103C是一种能够使用FreeRTOS的ARM Cortex M3处理器 我们直接在Arduino IDE中开始使用STM32F103C8的FreeRTOS 我们也可以使用K
  • FreeRTOS学习笔记(8)---- 软件定时器

    使用FreeRTOS软件定时器需要在文件FreeRTOSConfig h先做如下配置 1 configUSE TIMERS 使能软件定时器 2 configTIMER TASK PRIORITY 定时器任务优先级 3 configTIMER
  • FreeRTOS学习---“定时器”篇

    总目录 FreeRTOS学习 任务 篇 FreeRTOS学习 消息队列 篇 FreeRTOS学习 信号量 篇 FreeRTOS学习 事件组 篇 FreeRTOS学习 定时器 篇 FreeRTOS提供了一种软件定时器 用来快速实现一些周期性的
  • warning: #940-D: missing return statement at end of non-void function “fgetc“解决方案

    问题描述 warning 940 D missing return statement at end of non void function fgetc 解决方案 解决措施 引入头文件stdio h
  • 【STM32CubeMX】位置式PID调节控制输出电压(超详解)

    本文将借助STM32CubeMX来配置ADC DMA DAC USART 并利用PID位置式算法实现对输出电压进行AD采集通过PID算法调节DAC 获取到我们想要的电压值 讲解的主要知识 何为PID以及为何需要PID STM32CubeMX
  • FreeRTOS实时操作系统(三)任务挂起与恢复

    系列文章 FreeRTOS实时操作系统 一 RTOS的基本概念 FreeRTOS实时操作系统 二 任务创建与任务删除 HAL库 FreeRTOS实时操作系统 三 任务挂起与恢复 FreeRTOS实时操作系统 四 中断任务管理 FreeRTO
  • FreeRTOS多任务调度器基础

    Cortex M4中SysTick调度器核心 Cortex M4中的中断管理 Cortex M4中影子栈指针 Cortex M4中SVC和PendSV异常 1 Cortex M4中SysTick调度器核心 systick每一次中断都会触发内
  • 使用 GCC 编译器的 ARM 内核的堆栈回溯(当存在 MSP 到 PSP 切换时)

    核心 ARM Cortex M4 编译器 GCC 5 3 0 ARM EABI 操作系统 免费 RTOS 我正在使用 gcc 库函数 Unwind Reason Code Unwind Backtrace Unwind Trace Fn v
  • 如何将 void* 转换为函数指针?

    我在 FreeRTOS 中使用 xTaskCreate 其第四个参数 void const 是传递给新线程调用的函数的参数 void connect to foo void const task params void on connect

随机推荐

  • Linux安装MySQL8.0.16

    1 下载安装包 https www mysql com 2 安装MySQL 将下载好的安装包上传到服务器 然后解压 tar xvf mysql 8 0 16 el7 x86 64 tar gz 然后将解压目录重命名为mysql 8 0 16
  • 硬件中断和软件中断的区别

    中断 中断指当出现需要时 xff0c CPU暂时停止当前程序的执行转而执行处理新情况的程序和执行过程 即在程序运行过程中 xff0c 系统出现了一个必须由CPU立即处理的情况 xff0c 此时 xff0c CPU暂时中止程序的执行转而处理这
  • 嵌入式C语言自我修养笔记1-ARM体系结构与编译运行

    目录 ARM 体系结构ARM 体系结构ARM 汇编指令ARM 寻址方式ARM 伪指令C 与汇编混合编程 程序编译链接与安装运行预处理过程编译过程链接过程程序安装apt get链接静态库动态链接共享库插件工作原理Linux 内核模块运行机制L
  • Renode应用:在RISC-V核上运行FreeRTOS

    本篇记录通过Renode在RISC V核上运行FreeRTOS demo的情况 本来不准备写这一篇 xff0c 但是发现近期工作学习密度实在太大 xff0c 上周工作的中间结果这周竟然完全想不起来了 xff0c 不得不又花了一些时间从头摸索
  • VideoStream流媒体(VOD视频点播)系统平台

    软件介绍 xff1a VideoStream是集流媒体视频服务和流媒体应用管理为一体的综合流媒体服务系统 xff0c 本产品通过宽带IP网络为教育系统 各类运营商 政府企业等用户提供音视频服务的应用 系统特点 xff1a 1 采用WEB端口
  • c语言实现模拟FTP服务器项目

    下载源码后 xff0c 直接可以在ubuntu中编译运行 xff1a FTP服务器程序功能 xff1a 客户端 xff1a 1 输入命令 xff1a help 查看FTP服务器所支持的所有命令 2 输入名 xff1a ls 查看服务器上可以
  • 基于ArUco的视觉定位

    参考如下 博客 基于ArUco的视觉定位 1 3 https www freesion com article 4265319144 基于ArUco的视觉定位 4 https www pianshen com article 2491452
  • 伺服电机和步进电机的区别

    硬件型号 xff1a 三菱伺服电机HG KR43J 系统版本 xff1a 电机系统 1 控制的方式不同 步进电机 xff1a 通过控制脉冲的个数控制转动角度的 xff0c 一个脉冲对应一个步距角 伺服电机 xff1a 通过控制脉冲时间的长短
  • ubutnu更换国内源后,更新一直出现404,Not Found的问题

    1 问题 题主系统是ubuntu16 04 64位系统 尝试更换国内各种源 连ubuntu官方源都尝试了 sudo vim etc apt sources list修改为 deb https mirrors tuna tsinghua ed
  • Python+Flask实现股价查询系统。Python绘制股票k线走势

    文章目录 一 实现效果图二 实现思路1 获取数据 2 可视化数据三 源码获取 一 实现效果图 打开默认显示半年线 xff0c 可以通过可视化类型选择可视化k线图 高低点等 xff08 目前只完成了初版 xff0c 当查询的股票数据返回为空时
  • Failed to fetch http://mirrors.tuna.tsinghua.edu.cn/ubuntu/pool/main/g/gcc-5/g++-5_5.4.0-6ubuntu1~16

    今天在ubutun中在安装redis过程中 xff0c 安装gcc时遇到了Failed to fetch http mirrors tuna tsinghua edu cn ubuntu pool main g gcc 5 g 43 43
  • 切换日语输入法找不到MicrosoftIME键盘选项了

    去微软官方下载一个 Microsoft IME office 2010后 xff0c 安装解决 转载于 https www cnblogs com tupx p 3816026 html
  • msgid 属性

    Android源码中的String xml文件 xff0c msgid这个属性是干嘛的 xff1f 全局资源 xff0c 方便引用 比如在布局的text和activity中用到 转载于 https www cnblogs com Ph on
  • 2017年09月23日普级组 数列

    Description 小S今天给你出了一道找规律题 xff0c 题目如下 xff1a 有如下的数列1 xff0c 11 xff0c 21 xff0c 1211 xff0c 111221 xff0c 312211 xff0c 小S问你这个数
  • python 机器学习实战:信用卡欺诈异常值检测

    今晚又实战了一个小案例 xff0c 把它总结出来 xff1a 有些人利用信用卡进行诈骗等活动 xff0c 如何根据用户的行为 xff0c 来判断该用户的信用卡账单涉嫌欺诈呢 xff1f 数据集见及链接 xff1a 在这个数据集中 xff0c
  • Virtual Serial Port Driver 虚拟串口工具软件 使用介绍

    一般来说 xff0c 电脑的外部设备可以用过各种端口和电脑连接 常见的有USB xff0c VGA xff0c DVI等等 在工业领域或者是软件开发领域 xff0c 我们常常需要用简单低成本快捷的方式 xff0c 完成电脑和设备的连接 那么
  • Freertos 源码分析 队列queue

    队列queue xff08 零 xff09 队列的基础概念和形态 xff08 一 xff09 Freertos 队列 queue c FreeRTOS Kernel 10 4 6 include queue h Freertos队列模块包含
  • Freertos 任务TASK(一) 任务创建

    任务的创建 Freertos 的任务创建难点 1 xff09 堆栈生长的方向 2 xff09 64字节的对齐 3 xff09 任务堆栈初始化 Freertos 的任务使用任务控制块来进行管理 xff0c 是对任务的抽象 任务本身就是一段可执
  • Freertos Cortex-M3上下文切换

    上下文切换是操作系统实现虚拟化的核心功能 xff0c 操作系统对任务的管理通过上下文切换完成 Freertos 在STM32F103上的上下文切换是本文介绍的内容 STM32F103 采用 Cortex M3 内核 上下文切换的本质是对现场
  • STM32CubeMX配置freertos配置任务(一)

    使用STM32CubeMX 配置Freertos 生成一个任务点亮LED stm32cubemx STM32CubeMX 是 ST 意法半导体近几年来大力推荐的STM32 芯片图形化配置工具 xff0c 允许用户使用图形化向导生成C 初始化