系统调用和库函数及API的区别

2023-05-16

           在写程序的过程中,像MFC,VC++这些编程,都会涉及到函数的调用,有库函数也有系统函数,下面看一看它们的区别!!

           系统调用(system call)和库函数调用(Library function call)的区别?

           理解库函数的区别和系统调用,首先是kernel mode和user mode这两个模式是这两种函数工作时的空间不同。

           一、系统调用:

          系统调用实际上是指底层的一个调用,就是内核提供的、功能十分强大的一系列的函数。这些系统调用是在内核中实现的。是操作系统为用户态运行的进程和硬件设备(如CPU、磁盘、打印机等)进行交互提供的一组接口,即就是设置在应用程序和硬件设备之间的一个接口层。可以说是操作系统留给用户程序的一个接口。

           例如linux内核是单内核,结构紧凑,执行速度快,各个模块之间是直接调用的关系。放眼整个linux系统,从上到下依次是:用户进程->系统调用接口->linux内核子系统->硬件。linux内核包括了系统调用接口和内核子系统两部分。或者从下到上:物理硬件->OS内核->OS服务->应用程序。这里的OS起到了“承上启下”的关键作用,向下管理物理硬件,向上为操作系统服务和应用程序提供接口,这里的接口就是系统调用了。操作系统提供的少部分系统调用都是由C和汇编混合编写实现的,其接口用C来定义,具体实现则是汇编,这样的好处是执行效率高,而且极大的方便了上层的调用。

           在linux程序设计就是底层调用的意思,面向的是硬件。例如open,read,read等都是用于底层文件的访问(low-level file access),例如在驱动程序中对文件的直接访问;系统调用是操作系统相关的, 因此一般没有跨操作系统的可移植性;系统调用发生在内核空间,因此如果用户在用户空间的一般应用程序中使用系统调用来 进行文件的操作, 会有用户空间到内核空间的切换开销。事实上,即使在用户空间是用库函数来对文件进行操作,必然会引起系统的调用, 因为文件总是存储在介质上的,不管是读还是写,都是对硬件存储器的操做,必然引起系统调用。例如C库函数fwrite和fread就是通过read和write系统函数来实现的。这样的话,使用库函数也有系统调用的开销,为什么不直接使用系统调用呢: 这是因为读写文件通常是大量的数据(这种大量是相对于底层驱动的系统调用所实现的数据操作单位而言),这时,使用库函数就可以大大减少系统调用的次数(系统调用是一种中断服务机制,需要提出申请占用CPU或某些资源来对硬件访问与操做,如I/O操作,文件的读取更新等)。这一结果又缘于缓冲区技术。在用户空间和内核空间,对文件操作都使用了缓冲区,例如用fwrite写文件,都是先将内容写到用户空间缓冲区,当用户空间缓冲区满或者写操作结束时,才将用户缓冲区的内容写到内核缓冲区,同样的道理,当内核缓冲区满或写结束时才将内核缓冲区内容写到文件对应的硬件媒介。

      二、  库函数:

       顾名思义是把函数放到库里,是把一些常用到的函数编完放到一个文件里,供别人用。别人用的时候把所在的文件名用#include<>加到里面就可以了,一般放到lib文件里。库函数一般分为两类:一种是C语言标准规定的库函数,一类是编译器特定的库函数。libc就是一个C标准库,里面放着一些基本的函数,这些函数都被标准化了。

           库函数调用通常用于应用程序中对一般文件的访问,库函数调用是系统无关的,因此移植性好。

           库函数主要由两方面提供:一是操作系统提供的;另一类是由第三方提供的。

           系统提供的这些函数把系统调用进行封装或者组合,可以实现更多的功能,这样的库函数能够实现一些对于内核来说比较复杂的操作。比如read函数根据参数,直接就能读文件,而背后隐藏的文件比如在那个磁道,那个扇区,加载到那个内存,是程序员不必关心的问题。这些操作里面也包含了系统调用。

           对于第三方库,其实和系统库一样,只是他直接利用系统调用的可能性要小一些,而是系统提供的API接口来是实现(API接口是开放的)。比如printf和getchar这样,他们都是一个“外壳”,真正实现的不是它们本身,而是调用了别的函数。

           如printf的实现最终还是调用了putc()和user.h中的write()这样的系统调用,而另一些则不会使用系统调用,比如strlen,strcat,memcpy等;库函数大部分是对系统函数的封装(不绝对),这个世界上很少有绝对的事儿,例如世间一切的长度和质量等数字问题都不是绝对准确的,只是一个-----约等于

          三、系统调用和库函数之间的联系与区别:

           事实上,系统调用所提供给用户的是直接而纯碎的高级服务,如果想要更加人性化,具有更符合特定情况的功能,那么就要我们用户自己定义,因此衍生了库函数,它把部分系统调用包装起来。比如当我们要用C语言打印一句话的时候,如果没有用到库函数printf,那么我们就需要自己实现就需要调用putc()和write()等这样一些系统函数。显得比较麻烦,所以系统调用是为了方便使用操作系统的接口,而库函数则是为了人们编程的方便

           库函数的调用是语言或者应用程序的一部分,而系统调用则是操作系统的一部分。

           系统调用是应用程序与内核交互的接口。人们在长期的编程中发现使用系统函数有个重大的缺点,那就是程序的移植性。例如linux提供的系统调用的函数和windows就不一样。但是大部分的系统调用函数的速度库函数调用的速度要快。

      库函数调用则是面向应用开发的,相当于应用程序的api,采用这样的方式有很多原因:
     (1):双缓冲技术;
     (2):移植性;
     (3):底层调用本身存在的一些缺陷;
     (4):让api也可以有了级别和专门的工作面向;

问题一:API和系统调用的区别?
           API(Application Programming Interface),win32API也就是MicrosoftWindows32位平台的应用程序编程接口。windows规定一切的应用程序优先级为3,为windows自己的为0(0最高,3最低)。windows不允许应用程序直接访问硬件,但是会提供API函数让用户间接地访问,这样就会调用系统级API。平时出现的“...非法操作”就是因为应用程序非法访问硬件造成的。

API分为两种:

           第一:用户级API;替用户写好函数,方便调用,使程序员可以将焦点放在设计程序逻辑上面,而不必再编写繁琐、重复的程序,不必关注技术的细节。例如VC++,MFC,VB等都是类库和各种控件,它代替了API的神秘功能。

           第二:系统级API;如果应用程序想要和硬件交互,必须调用此类函数。程序员调用的是API(api函数),然后通过与系统调用共同完成函数的功能。因此,API是一个提供给应用程序的接口,一组函数,是与程序猿直接进行交互的。系统调用则不与程序员进行交互,它是根据API函数,通过一个软件中断机制向内核提交请求(trap指令类似于一个系统中断,系统也会有一个特殊的中断处理函数(interrupt handler)来处理用户的请求),以获得内核服务的接口。并不是所有的API函数都一一对应一个系统的调用,有时,一个API函数会需要几个系统调用共同来完成函数的功能,甚至一些API函数不需要调用相应的系统调用,不需要内核提供的服务。

问题二:什么是 回调函数?

           回调函数就是一个通过函数指针调用的函数,使用回调函数实际上就是在调用某个函数(通常是API函数)时,将自己的一个函数(这个函数为回调函数)的地址作为参数传递给那个函数。也就是把需要执行的代码地址给系统,系统在恰当的时候执行。这时你可以利用这个机会在回调函数中处理消息或完成一定的操作。类似于中断处理机制,中断在某方面使计算机变得智能!

           系统回调函数必须是由系统调用,但是这个函数可以是用户编写的,完成相应的功能服务。


参考博文资料:

http://blog.sina.com.cn/s/blog_5e8a369a0100jhfy.html

http://blog.csdn.net/edonlii/article/details/20135059

http://bbs.21ic.com/icview-91310-1-1.html

http://www.tuicool.com/articles/QvUJFvf

http://blog.chinaunix.net/uid-27177626-id-3648465.html

http://soft.chinabyte.com/os/258/12424258.shtml

感谢博主的分享!


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

系统调用和库函数及API的区别 的相关文章

  • FreeRTOS学习总结 (二)

    FreeRTOS学习总结 四 软件定时器 软件计时器由FreeRTOS内核实现 xff0c 并在其控制之下 它们不需要硬件支持 xff0c 也与硬件计时器或硬件计数器无关 软件计时器功能是可选的 要使用软件计时器功能 xff1a 1 构建F
  • 网络编程及三大协议(TCP + UDP + Http)

    网络编程及三大协议 xff08 TCP 43 UDP 43 Http xff09 一 网络编程 1 计算机网络 是指将地理位置不同的具有独立功能的多台计算机及其外部设备 xff0c 通过通信线路连接起来 xff0c 在网络操作系统 xff0
  • 仿真软件GCKontorl之软件在环(SiL)仿真

    摘要 xff1a 软件在环SiL Software in the Loop 仿真 xff0c 是将仿真工程中的某些仿真模型或控制策略 xff0c 采用写手代码替代 xff0c 完成软件在环 SiL 的仿真测试及验证 特别是C语言在嵌入式系统
  • [数学建模]数学建模算法和模型(B站视频)(一)

    数学建模 数学建模算法和模型 xff08 B站视频 xff09 xff08 一 xff09 层次分析法 层次分析法 xff0c 简称AHP xff0c 是指将与决策总是有关的元素分解成目标 准则 方案等层次 xff0c 在此基础之上进行定性
  • 决策树的各类概述

    LogisticRegression 1 决策树的前世今生1 1 什么是决策树1 2 决策树的构建1 3 sklearn中使用决策树 2 决策树的特征选择2 1 信息论相关概念2 2 信息熵2 3 条件熵2 4 信息增益2 5 信息增益率2
  • 事件流及其三阶段

    事件流 1 事件的捕获阶段 2 事件的目标阶段 3 事件的冒泡阶段 事件有三个阶段 xff0c 首先发生的是捕获阶段 xff0c 然后是目标阶段 xff0c 最后才是冒泡阶段 xff0c 对于捕获和冒泡 xff0c 我们只能干预其中的一个
  • 卡尔曼滤波

    这篇文章完全是我自己为了记录一下自己对于KF的印象 xff0c 表层的不能再表层了 如果是需要详细了解KF的请去阅读高手的文章 xff0c 不要在此篇上浪费时间 前言 xff1a 在读一些文章的时候 xff0c 总会看到研究方法基于卡尔曼滤
  • Nvidia Jetson TX2入门指南(白话版)

    最近要用到jetson tx2 xff0c 但之前也完全没有接触过 边用边学 xff0c 这篇文章就是向新手介绍下jetson tx2刚入手的一些事项 适合纯小白 一 TX2初认识 开发板全称 xff1a Nvidia Jetson tx2
  • Nvidia Jetson TX2+Intel Realsense D435i跑ORB_SLAM3

    前言 xff1a 网上的教程实在是太多 xff0c 从诸多教程中找到一个适合自己的实属不易 将此记录下来 xff0c 希望能够帮助到有需要的人 因为时间紧迫 xff0c 没时间写特别详细的内容 xff0c 只能引用一些他人的步骤 请见谅 x
  • catkin_make

    普通情况下编译文件都是使用cmake make工具 xff0c 与此有关的内容可以参考 xff1a cmake CMakeLists txt make makefile的关系 但ROS中还有catkin make xff0c 不清楚他们之间
  • Airsim仿真

    Airsim设计的目的 xff1a 1 现实世界开发测试自动驾驶车辆算法费时费力 2 迎合AI的发展 xff0c 需要在各种条件下和环境下收集大量带注释训练数据 模块化设计 xff0c 强调可扩展性 提供很多API xff0c 核心组件包括
  • 0404---通过SSH连接远程服务器运行图形界面程序问题

    远程运行 linux 服务器图形界面程序问题 通常部署在数据中心机房中的服务器是没有图形桌面的 xff0c 对服务器的日常运维也往往通过远程客户端命令窗口来进行 xff0c 但有时候往往需要在服务器上远程安装或运行图形窗口类软件 xff0c
  • Jetson NX emmc版本系统转移到SSD

    因emmc版本的NX自带内存不够大 xff0c 只有16GB xff08 手上的是这个型号 xff09 xff0c 安装系统大概需要除去4G多内存 xff0c 再安装CUDA cuDNN TensorRT等内存直接爆满 无法继续使用 所以需
  • ssh远程登录报错:kex_exchange_identification: Connection closed by remote host

    基本信息 系统 xff1a MacOS Catalina 10 15 7 报错信息 xff1a 终端登录远程 服务器 时报错 xff1a kex exchange identification Connection closed by re
  • 如何在Windows的cmd下让程序在后台执行

    如何在Windows的cmd下让程序在后台执行 xff1f Hu Dennis 2008 12 24 在windows下启动JBoss服务器 xff0c 需要在命令行中输入run bat 但是运行后如果你想停止服务器 xff0c 可能的做法
  • 嵌入式LINUX识别U盘的问题

    我试过mount U盘 当开机后mount 第一个U盘时 xff0c 一般设备名为sda xff0c 然后umount xff0c 并重插另外一个U盘 xff0c 再mount xff0c 发现设备名变为sdb了 此试验进行了几次 xff0
  • yolov4+deepsort(yolo目标检测+自适应卡尔曼滤波追踪+毕业设计代码)

    项目介绍 该项目一个基于深度学习和目标跟踪算法的项目 xff0c 主要用于实现视频中的目标检测和跟踪 该项目使用了 YOLOv4 目标检测算法和 DeepSORT 目标跟踪算法 xff0c 以及一些辅助工具和库 xff0c 可以帮助用户快速
  • 集成学习(含常用案列)

    集成学习原理 xff1a 工作原理是生成多个分类器 模型 xff0c 各自独立地学习和作出预测 这些预测最后结合成组合预测 xff0c 因此优于任何一个单分类的做出预测 集成学习算法分类 xff1a 集成学习算法一般分为 xff1a bag
  • 字节序与比特序详解

    字节序的定义 几种类型的字节序 cpu字节序外部bus字节序设备字节序网络协议字节序 Ethernet协议字节序IP协议字节序 编译字节序 比特序的定义字节序与bit序的转换结构体的位域 字节序的定义 字节序就是说一个对象的多个字节在内存中
  • 【动态规划】01背包问题

    问题描述 有n个物品 xff0c 它们有各自的体积和价值 xff0c 现有给定容量的背包 xff0c 如何让背包里装入的物品具有最大的价值总和 xff1f 为方便讲解和理解 xff0c 下面讲述的例子均先用具体的数字代入 xff0c 即 x

随机推荐

  • 献给初学labview数据采集的初学者

    前言 xff1a 参考来源 xff1a http bbs elecfans com jishu 209658 1 5 html xff0c 感谢原作者 zhihuizhou 这里的内容只针对NI的数据采集卡 xff0c 不保证适用于其它公司
  • 如何从科学论文中实现一个算法

    原文 xff1a http codecapsule com 2012 01 18 how to implement a paper 作者 xff1a Emmanuel Goossaert 本文是从科学论文中实现算法的简短指南 我从书籍和科学
  • 国内C/C++刷题网站汇总

    作者 xff1a Luau Lawrence 链接 xff1a https www zhihu com question 25574458 answer 31175374 来源 xff1a 知乎 Welcome To PKU JudgeOn
  • 华为16道经典面试题

    面试过程中 xff0c 面试官会向应聘者发问 xff0c 而应聘者的 回答将成为面试官考虑是否接受他的重要依据 对应聘者而言 xff0c 了解这些问题背后的 猫腻 至关重要 本文对面试中经常出现的一些典型问题进行了整理 xff0c 并给出相
  • 语音信号的预加重和加窗处理

    原文转载于 xff1a http blog csdn net ziyuzhao123 article details 12004603 非常感谢 一 语音信号的预加重 语音信号的预加重 xff0c 目的是为了对语音的高频部分进行加重 xff
  • 单独编译和使用webrtc音频增益模块(AGC)

    原文转载于 xff1a http www cnblogs com mod109 p 5767867 html top 非常感谢 webrtc的音频处理模块分为降噪ns xff08 nsx xff09 xff0c 回音消除aec xff08
  • 功率谱和频谱的区别

    生活中很多东西之间都依靠信号的传播 xff0c 信号的传播都是看不见的 xff0c 但是它以波的形式存在着 xff0c 这类信号会产生功率 xff0c 单位频带的信号功率就被称之为功率谱 它可以显示在一定的区域中信号功率随着频率变化的分布情
  • 如何解决在rviz中,路径规划导航时,点击2D Pose estimate后机器人位置没有改变,终端也没有反应的问题

    在rviz中 xff0c 点击2D Pose estimate后机器人位置没有改变 xff0c 终端也没有反应 xff0c 通常这种情况就是由于客户端和服务端IP地址不一致导致的 xff0c IP地址有时候系统会自动变更 xff0c 这里我
  • 五款免费开源的语音识别工具

    按 xff1a 本文原作者 Cindi Thompson xff0c 美国德克萨斯大学奥斯汀分校 xff08 University of Texas at Austin xff09 计算机科学博士 xff0c 数据科学咨询公司硅谷数据科学
  • 动态内存分配

    动态内存分配 常见的内存分配的错误 先上一个内存分配的思维导图 便于联想想象 xff0c 理解 xff1a 首先我们介绍一下内存分配的方式 xff1a 1 在静态存储区域中进行分配 内存在程序编译的时候就已经分配好 xff0c 这块内存在程
  • UEFI架构

    UEFI架构 UEFI提供系统化的标准方法 xff0c 加载驱动并管理他们之间的交互 前言 xff1a 感谢uefi blog UEFI 提供了一个标准接口 xff0c 以便在硬件发生变更时固件能提供足够信息而保证操作系统不受影响 它包含有
  • C++调试工具(未完)

    C 43 43 调试相关命令 ld so conf https blog csdn net Bruce 0712 article details 78816790相关的命令 ar nm 目标格式文件分析 xff0c 所以也可以分析 a文件
  • 11_UART串口

    11 UART 文章目录 11 UART1 串口连接芯片图2 串口传输一个字节的过程3 发送接收过程4 编写UART函数4 1 初始化函数uart0 init 4 1 1 设置引脚用于串口4 1 2 使能上拉4 1 3 设置波特率4 1 4
  • 汇编指令:LDMIA、LDMIB、LDMDB、LDMDA、STMIA、LDMFD、LDMFA、LDMED、LDMEA

    ARM指令中多数据传输共有两种 xff1a LDM load much xff1a 多数据加载 将地址上的值加载到寄存器上 STM store much xff1a 多数据存储 将寄存器的值存到地址上 主要用途 xff1a 现场保护 数据复
  • C++ 实现 发送HTTP Get/Post请求

    1 简述 最近简单看了一下关于HTTP请求方面的知识 xff0c 之前一直用Qt来实现 xff0c 有专门HTTP请求的QNetworkAccessManager类来处理 xff0c 实现也比较简单 xff0c 这里主要讲解一下用C 43
  • [Simple] 洗牌算法

    题目要求 xff1a 平时洗牌是两打牌 xff0c 交叉洗在一起 也就是开始 1 2 3 4 5 6 7 8 第一次 1 5 2 6 3 7 4 8 第二次 1 3 5 7 2 4 6 8 第k次 给你一个数组a 2N xff0c 要求在O
  • 【PID控制原理及其算法】

    前言 本文以自己的学习过程总结而来 xff0c 将自己的经验写出来以供大家一起学习 xff0c 如有错误请多指教 一 PID是什么 xff1f PID就是比例 积分 微分 xff0c PID算法可以说是在自动控制原理中比较经典的一套算法 x
  • printf重定向的相关总结

    简介 实现printf重定向有多种方式 xff0c 下面一一介绍 linux环境下 虽然linux系统的默认标准输出设备是显示器 xff0c 但是我们可以把printf打印输出的内容重定向到其他设备或文件 方法如下 xff1a 方法1 xf
  • 开发者七问七答:什么是产品化?

    简介 xff1a 之前参加了企业智能部门如何做产品化的讨论 xff0c 大家对产品化的定义和过程都有各自不同的见解 我觉得这个话题其实可以扩展下 xff0c 想站在一个开发人员的视角尝试探讨一下产品化 下面以自问自答的方式来展开 1 当我们
  • 系统调用和库函数及API的区别

    在写程序的过程中 xff0c 像MFC xff0c VC 43 43 这些编程 xff0c 都会涉及到函数的调用 xff0c 有库函数也有系统函数 xff0c 下面看一看它们的区别 xff01 xff01 系统调用 xff08 system