TIM_OCMode_PWM2;TIM_OCMode_PWM1

2023-05-16

首先,本人虽然初学STM32但极力反对一种误人子弟的观点:“对于STM32这样级别的MCU,有库函数就不用去看寄存器怎么操作的了!”

好了,言归正传,最近总看到很多朋友对于PWM这个实验有很多的疑惑,看到原子也在极力的回复也挺累的(体谅一下幸苦的原子大神,(*^__^*) ),所以我打算写这么一篇文字来阐述一下我个人对STM32的PWM的理解。

首先来说,你要使用PWM模式你得先选择用那个定时器来输出PWM吧!除了TIM6、TIM7这两个普通的定时器无法输出PWM外,其余的定时器都可以输出PWM,每个通用定时器可以输出4路PWM,高级定时器TIM1、TIM8每个可输出7路PWM,这里为了方便起见,我们选择与实验相同的TIM3的通道2来说明。选好定时器及通道后,下一步就是要使能定时器的时钟,根据需要看看是否需要重映射IO,然后就是配置输出PWM的IO及定时器,到这里原子的视频及例程都有详细的介绍,这里只需要提一点有些网友疑惑的TIM_TimeBaseStructure.TIM_ClockDivision = 0;这句话是什么作用?其实仔细看过技术手册后发现这句话与PWM输出实验其实是没关系的,这句话是设置定时器时钟(CK_INT)频率与数字滤波器(ETR,TIx)使用的采样频率之间的分频比例的(与输入捕获相关),0表示滤波器的频率和定时器的频率是一样的。至于其余部分,我就不再赘述。做完这些准备工作后,我就针对大多数朋友疑惑的地方——PWM模式的初始化设置做一个详细的阐述:先贴代码

     1       TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
     2       TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
     3       TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高
     4       TIM_OC2Init(TIM3, &TIM_OCInitStructure);   //根据T指定的参数初始化外设TIM3 OC2
     5       TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); //使能TIM3在CCR2上的预装载寄存器,即TIM3_CCR2的预装载值在更新事件到来时才能被传送至当前寄存器中。
     6       TIM_Cmd(TIM3, ENABLE);  //使能TIM3
这6句话就把PWM的通道配置好了,一句句来解释:
这里原子选择的PWM2模式,为什么选择的是PWM2模式呢?为什么不选择PWM1模式呢?两者又有什么区别呢?下面我们就一探究竟,PWM1和PWM2模式是由CCMR1的OC1M和OC2M来决定的,因为我们选择的是是通道2,所以设置的是OC2M,再看相关介绍
OC1M[2:0]:输出比较1模式(Output compare 1 enable)

110:PWM模式1- 在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为
无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否
则为有效电平(OC1REF=1)。
111:PWM模式2- 在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为
有效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电
平。

 看到红色的“有效电平”了吧,那么这又是谁定义的呢?别急,再看手册,可知它是由CCER这个寄存器的CCxP来决定的这里是通道2,所以是CC2P,继续看介绍

CC1P:输入/捕获1输出极性(Capture/Compare 1 output polarity)  位1 
CC1通道配置为输出:
0:OC1高电平有效
1:OC1低电平有效
现在很清楚了吧,又因为第3句,TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高,所以这里我们设置的CC2P是0,也就是默认的OC2高电平有效。这样第3句话也捎带着解释了,哈哈!由于我们的战舰板的LED是低电平亮,而刚开始的给CC2P用来设置占空比的led0pwmval为0它是小于等于TIM3_CNT的,也就符合TIMx_CNT>=TIMx_CCR1时通道2输出有效电平,也就是高电平,所以你把原子的例程原封不动的Down到板子里,会看到刚上电,LED灯是不亮的。现在这块明白了吧!若你觉得还是不爽,我就非得用PWM1模式,那也可以,就像有个网友说“我拿原子的PWM Code就改了一个PWM1模式,按原子讲的PWM1和PWM2的输出是相反的啊,可是我上电发现LED是常亮的啊?怎么回事啊,求解释啊。。。”我们来分析一下这位朋友的代码,他把PWM2改成了PWM1,别的什么都没动,那么现在符合“PWM模式1- 在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平”
,否则为无效电平。“结果必然是就是LED长亮喽,要想得到跟原代妈一样的效果,那就把CC2P设置成1,OC2低电平有效,这样就可以了,有兴趣的朋友可以动手试试!(实践出真知吗!)
好了,废了这么多话,也不早了 洗洗睡吧!希望这篇文字对PWM有疑惑的朋友有所帮助!希望大家共同进步!分享是一种快乐,欢迎批评指正!

 遗漏了一点,第5句还没解释呢,

5       TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); //使能TIM3在CCR2上的预装载寄存器,即TIM3_CCR2的预装载值在更新事件到来时才能被传送至当前寄存器中。
这句话是说,CCR2中的预装载值何时被传送到当前的CNT寄存器中,这里我们选择的是当更新事件到来的时候才装载,追踪寄存器的设置可知,原来设置的是CCMR1的OC2PE,其实还有一种方式是立即装载看手册:
OC1PE:输出比较1预装载使能(Output compare 1 preload enable)  位3 
0:禁止TIMx_CCR1寄存器的预装载功能,可随时写入TIMx_CCR1寄存器,并且新写入的数
值立即起作用。
1:开启TIMx_CCR1寄存器的预装载功能,读写操作仅对预装载寄存器操作,TIMx_CCR1的
预装载值在更新事件到来时被传送至当前寄存器中。


TIM_OC1PreloadConfig(),TIM_ARRPreloadConfig();这两个函数控制的是ccr1和arr的预装在使能,使能和失能的区别就是:使能的时候这两个局存期的读写需要等待有更新事件发生时才能被改变(比如计数溢出就是更新时间)。失能的时候可以直接进行读写而没有延迟。
另外在运行当中想要改变pwm的频率和占空比调用:TIM_SetAutoreload()
TIM_SetCompare1()这两个函数就可以了。

学习后发现stm32的定时器功能确实很强大,小总结一下方便以后使用的时候做参考。Stm32定时器一共分为三种:tim1和tim8是高级定时器,6和7是基本定时器,2—5是通用定时器。从名字就可以看得出来主要功能上的差异。今天我主要是用定时器做pwm输出,所以总结也主要是针对pwm方面的。
       先大致说下通用和高级定时器的区别。通用的可以输出四路pwm信号互不影响。高级定时器可以输出三对互补pwm信号外加ch4通道,也就是一共七路。
所以这样算下来stm32一共可以生成4*5+7*2=30路pwm信号。接下来还有功能上的区别:通用定时器的pwm信号比较简单,就是普通的调节占空比调节频率(别的不常用到的没去深究);高级定时器的还带有互补输出功能,同时互补信号可以插入死区,也可以使能刹车功能,从这些看来高级定时器的pwm天生就是用来控制电机的。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

TIM_OCMode_PWM2;TIM_OCMode_PWM1 的相关文章

  • Windows 10安装ubuntu18.04双系统(bios和boot manager)

    1 按照网上教程制作系统盘 xff1b 2 在windows下创建空白区 xff0c 为ubuntu分配空间 xff1b 3 用做好的系统盘安装系统 由于各个厂商计算机的bios和boot manager启动键不同 xff0c 自行百度 本
  • OpenCv入门(三)——阈值化处理

    目录 0x01 OTSU 0X02 固定阈值化 0x03 自适应阈值化 0x04 双阈值化 0x05 半阈值化 在图像处理中 xff0c 处理灰度图像的计算量要小于处理彩色图像 xff0c 而二值化图像 xff08 只含灰度值0或1 xff
  • 运行gazebo时出现[Err] [REST.cc:205] Error in REST request

    出现错误 xff1a Err REST cc 205 Error in REST request libcurl 51 SSL no alternative certificate subject name matches target h
  • 安装双系统ubuntu18.04后,不能进入ubuntu界面的解决办法

    某天晚上电脑自动升级了bios xff0c 作为新手小白此时还没有意识到问题 第二天开机发现电脑不仅不能进去ubuntu xff0c 连bios都进不去了 多次开机关机重复后 xff0c 灵机一动改成重启 xff0c 终于有进入bios的界
  • Python中集合的使用

    1 set add xff09 xff1a 向集合中添加元素 xff0c 是整体添加进集合set中 xff1b set update 向集合中添加元素 xff0c update是将字符串中的拆分成字符进行追加 xff1b eg s1 61
  • Resource not found问题

    在运行ros中的xacro文件时出现的如下问题 resource not found mbot description ROS path 0 61 opt ros melodic share ros ROS path 1 61 opt ro
  • 启动Moveit Setup Assistant出错

    1 首先安装moveit配置助手 xff0c 我的ubuntu版本是18 04 xff0c 所以运行 xff1a sudo apt get install ros melodic moveit 填写个人密码安装 source opt ros
  • 形参如何改变实参

    把实参数组传递给函数 xff0c 则形参从数组那里得到了起始地址 xff0c 因此数组与实参数组共占了同一段内存单元 xff0c 在函数调用期间 xff0c 该变了形参数组的值 xff0c 也就改变了实参数组的值 例 xff1a int i

随机推荐

  • Linux下ARM 和单片机的串口通信设计

    摘要 xff1a 介绍Linux 环境下串口通信的设计方法和步骤 xff0c 并介绍了ARM9 微处理器s3c2440 在Linux 下和C8051Fxxx 系列单片机进行串行通信的设计方法 xff0c 给出了硬件连接和通信程序流程图 该方
  • AT+CSQ信号质量指示含义

    AT 43 CSQ 命令解释 xff1a 检查网络信号强度和SIM卡情况 命令格式 xff1a AT 43 CSQ lt CR gt 命令返回 xff1a AT 43 CSQ lt rssi gt lt ber gt 其中 lt rssi
  • MIPI接口和DVP接口的区别及优点

    DVP是并口 xff0c 需要PCLK VSYNC HSYNC D 0 xff1a 11 可以是8 10 12bit数据 xff0c 看ISP或baseband是否支持 xff1b MIPI是LVDS xff0c 低压差分串口 只需要要CL
  • 立体耳机插头和四极耳机插头三段、四段处的区别

    立体 耳机插头 和四极 耳机插头 三段 四段处的区别 在日常生活中 xff0c 通常较为细心的消费者就会发现 xff0c 适用于NOKIA手机的 耳机插头 和适用于iphone的 耳机插头 是互补兼容的 xff0c 但是iphone HTC
  • Nuttx学习笔记(一)

    最近在工作上需要用到这个nuttx实时操作系统 xff0c 并且对这个系统进行学习记录以及记录下自己所遇到过的问题 目录 一 环境配置 xff08 1 xff09 基础环境 xff08 2 xff09 下载nuttx xff08 3 xff
  • kernel command line 参数详解

    Linux内核在启动的时候 xff0c 能接收某些命令行选项或启动时参数 当内核不能识别某些硬件进而不能设置硬件参数或者为了避免内核更改某些参数的值 xff0c 可以通过这种方式手动将这些参数传递给内核 如果不使用启动管理器 xff0c 比
  • Internal error: Oops:

    01 02 00 02 24 110 SysRq Emergency Remount R O 01 02 00 02 24 221 mdss fb release all unknown process adbd pid 61 415 mf
  • /proc/meminfo详解

    cat proc meminfo MemTotal 2052440 kB 总内存 MemFree 50004 kB 空闲内存 Buffers 19976 kB 给文件的缓冲大小 Cached 436412 kB 高速缓冲存储器 http b
  • 浅谈Camera工作原理

    一 摄像头简介 摄像头 xff08 CAMERA xff09 又称为电脑相机 电脑眼等 xff0c 它作为一种视频输入设备 xff0c 在过去被广泛的运用于视频会议 远程医疗及实时监控等方面 近年以来 xff0c 随着互联网技术的发展 xf
  • EVT、DVT、PVT、MP等简介

    PLM xff08 Product Lifecycle Management xff09 System xff1a PLM是协助产品能够顺利完成在新产品开发 xff08 NPI xff1a New Product Introduction
  • UbuntuServer 12.04 svn服务的创建

    以下是我整理后的步骤 xff1a 1 安装必要的软件包 xff1a sudo apt get install subversion sudo apt get install libapache2 svn 2 创建一个SVN账号和SVN组 x
  • 在ESXi上把OpenWrt变成真正的路由器

    前面把openwrt装到了VMware workstation上 xff0c 本来想把openwrt直接安装到ESXi的 xff0c 但是转换镜像的时候不能生成OVF或者OVA文件 所以就先把镜像安装到了workstation xff0c
  • 电源和电池两种电源选一的芯片

  • can总线中的SOF、SRR、IDE和RTR数据位都是指什么

    帧起始 SOF xff1a 帧起始 SOF 标志着数据帧和远程帧的起始 xff0c 仅由一个 显性 位组成 仲裁域由标识符和RTR位组成 xff0c 标准帧格式与扩展帧格式的仲裁域格式不同 标准格式里 xff0c 仲裁域由1l位标识符和RT
  • linux makefile的一些变量

  • Nuttx学习笔记(二)————在STM32上部署Nuttx系统

    目录 一 平台配置 二 在ubuntu下使用串口来烧录至目标文件至STM32F07 xff08 一 xff09 ubuntu下stm32flash工具下载 xff08 二 xff09 Ubuntu20 04安装stm32开发环境 xff08
  • linux种Makefile一些自动化变量

  • arm 中的三级流水线中的PC值和当前指令的关系

  • TIM输出比较的三种模式

    TIM输出比较的三种模式 此项功能是用来控制一个输出波形 xff0c 或者指示一段给定的的时间已经到时 当计数器与捕获 比较寄存器的内容相同时 xff0c 输出比较功能做如下操作 xff1a 将输出比较模式 TIMx CCMRx寄存器中的O
  • TIM_OCMode_PWM2;TIM_OCMode_PWM1

    首先 xff0c 本人虽然初学STM32但极力反对一种误人子弟的观点 xff1a 对于STM32这样级别的MCU xff0c 有库函数就不用去看寄存器怎么操作的了 xff01 好了 xff0c 言归正传 xff0c 最近总看到很多朋友对于P