(6.1)Kubernetes的Sevice服务间调用

2023-05-16

1、场景1

选择器(selector)

在k8s上运行了两个pod(replicas: 2),我们通过Service来整合这两个pod。在创建 Service 时,就要通过选择器(selector)来获取符合条件的 Pod 进行整合。同过Service整合不仅能成功访问,而且还提供了负载均衡的功能。

step1:创建两个pod

apiVersion: v1
kind: Service
metadata:
  # Service 实例名称
  name: svc-echoserver
spec:
  ports:
    - protocol: TCP
      # Service 端口地址
      port: 8080
      # Pod 端口地址
      targetPort: 80
  selector:
    # 匹配符合标签条件的 Pod
    app: echoserver

step2:创建 Service 时,通过选择器(selector)来获取符合条件的 Pod 进行整合。

apiVersion: v1
kind: Service
metadata:
  # Service 实例名称
  name: svc-echoserver
spec:
  ports:
    - protocol: TCP
      # Service 端口地址
      port: 8080
      # Pod 端口地址
      targetPort: 80
  selector:
    # 匹配符合标签条件的 Pod
    app: echoserver

虽然Service解决了Pod的服务发现和负载均衡问题,但存在着类似的问题:不提前知道Service的IP,还是需要改程序或配置啊。看到这里有没有感觉身体被掏空?

2、场景2

环境变量(老方法)

我们知道通过 Service 生成的 ClusterIP(VIP)来访问 Pod 提供的服务,例如:

kubectl get svc
NAME         TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)    AGE
kubernetes   ClusterIP   10.96.0.1      <none>        443/TCP    148d
ngnix        ClusterIP   10.108.9.138   <none>        8080/TCP   91d
[root@master ~]# curl 10.108.9.138:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

在之前的版本中(即老版本的做法),Kubernetes 采用了环境变量的方法,每个 Pod 启动的时候,会通过环境变量设置所有服务的 IP 和 port 信息,这样 Pod 中的应用可以通过读取环境变量来获取依赖服务的地址信息,这种方法使用起来相对简单,但是有一个很大的问题就是依赖的服务必须在 Pod 启动之前就存在,不然是不会被注入到环境变量中的。

查看环境变量:

# kubectl exec  nginx-deployment-5489c599c4-cgp79 env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=nginx-deployment-5489c599c4-cgp79
KUBERNETES_PORT_443_TCP_PORT=443
NGNIX_PORT_8080_TCP=tcp://10.108.9.138:8080
NGNIX_PORT_8080_TCP_PROTO=tcp
NGNIX_PORT_8080_TCP_ADDR=10.108.9.138
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
NGNIX_SERVICE_PORT=8080
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
KUBERNETES_PORT_443_TCP_PROTO=tcp
NGNIX_SERVICE_HOST=10.108.9.138
NGNIX_PORT=tcp://10.108.9.138:8080
NGNIX_PORT_8080_TCP_PORT=8080
KUBERNETES_SERVICE_HOST=10.96.0.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_PORT=tcp://10.96.0.1:443
NGINX_VERSION=1.12.2-1~stretch
NJS_VERSION=1.12.2.0.1.14-1~stretch
HOME=/root

进入容器内部检查是不是有这个环境变量

# kubectl exec -it  nginx-deployment-5489c599c4-cgp79 /bin/bash
root@nginx-deployment-5489c599c4-cgp79:/# echo $KUBERNETES_SERVICE_HOST
10.96.0.1

我们来看创建的 nginx-service 这个服务,有 HOST、PORT、PROTO、ADDR 等,也包括其他已经存在的 Service 的环境变量,现在如果我们需要在这个 Pod 里面访问 nginx-service 的服务,我们是不是可以直接通过 NGINX_SERVICE_SERVICE_HOST 和 NGINX_SERVICE_SERVICE_PORT 就可以了,但是我们也知道如果这个 Pod 启动起来的时候如果 nginx-service 服务还没启动起来,在环境变量中我们是无法获取到这些信息的,当然我们可以通过 initContainer 之类的方法来确保 nginx-service 启动后再启动 Pod,但是这种方法毕竟增加了 Pod 启动的复杂性,所以这不是最优的方法。

 

3、场景3

kube-dns或CoreDns

3.1 kube-dns

kube-dns安装好了之后(安装方法自行baidu),怎么在一个pod(例如:curl-util)里面访问另外一个服务(例如:服务名称为my-nginx)呢?其实很简单,如下:

-------------------------------------------------------------------------------------------------------------------------------------------------

 

 

3.2 core-dns

安装新版本k8s,coredns已经成为默认dns了。之前是kube-dns。coredns是一个灵活,可扩展的DNS服务器,可以作为Kubernetes集群DNS。与Kubernetes一样,CoreDNS项目由CNCF主持。但是在实际使用中,需要一些注意的地方。

验证方法同kube-dns(待验证)...

 

 

4、场景4

NodePort

对外暴露服务:此处无须多言:NodePort

 

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

(6.1)Kubernetes的Sevice服务间调用 的相关文章

随机推荐

  • 立创eda学习笔记一:pcb板基础知识

    整理了一下零基础学习pcb板画图需要了解的一些基础知识 xff0c 否则后面画图很困扰 什么是pcb板 xff1f PCB xff08 Printed Circuit Board xff09 xff0c 中文名称为印制电路板 xff0c 又
  • 立创eda学习笔记二:画pcb板流程(极简入门版)

    一般PCB基本设计流程如下 xff1a 前期准备 gt PCB结构设计 gt PCB布局 gt 布线 gt 布线优化和丝印 gt 网络和DRC检查和结构检查 gt 制版 一 画原理图 完成后检查元件的封装 连线是否正确 核实电路结构 xff
  • 立创eda学习笔记十一:立创eda、立创商城、嘉立创的区别

    简单来说 xff1a 立创eda是一个画原理图和pcb的eda软件 xff0c 类似于ad 立创商城是一个卖元器件网上平台 xff0c 类似于淘宝 嘉立创是一个生产pcb板 给pcb板贴片的生产厂家 一般情况下 xff0c 你可以在立创ed
  • 立创eda学习笔记十七:铺铜

    铺铜是pcb设计很常用的指令 xff0c 或者是必然用到的指令 xff0c 很多时候布线的时候不去画gnd的线 xff0c 把其他线画好了之后 xff0c 再统一铺铜作为gnd xff0c 这样方便很多 铺铜这个概念可以理解为大面积的布线
  • 立创eda学习笔记二十六:手把手教你使用立创eda的官方教程

    可以通过以下办法找到教程 xff1a 1 xff0c 在软件界面点帮助 使用教程 2 xff0c 在网站首页 帮助 教程进入 如何使用教程 xff1a 这里是一级目录 xff0c 其实对新手最有用的是前面3个部分 xff0c 后面的仿真先不
  • 立创eda学习笔记二十四:拼板

    这里主要是两部分 xff1a 自带拼板和手动拼板 xff0c 软件自带拼板功能 xff0c 那么手动拼板当然就是自己重新画图拼板了 一般用自带拼板功能就可以了 xff0c 把单板画好之后很容易就拼好了 xff0c 完全不用动任何器件和丝印编
  • Prometheus实战教程:监控mysql数据库

    今天我们使用prometheus 43 Grafana 43 mysql exporter实现监控mysql数据库各项指标数据 mysql exporter xff1a 采集mysql数据库各项指标数据 prometheus xff1a 获
  • prometheus常用exporter下载地址大全

    1 node exporter下载 https github com prometheus node exporter releases 2 blackbox exporter下载 https github com prometheus b
  • 论文润色 ‖ 一分钟教你如何写好SCI论文里的主题句,事半功倍

    今天 xff0c 小编来分享一下论文润色 xff0c SCI论文的主题句 xff08 Topic Sentences xff09 怎么写 xff1a 01什么是主题句 xff1f 主题句通常是段落开头的一句话 xff0c 是整个段落的小主题
  • Go xml文件处理

    在开发中会常遇到xml数据序列化和反序列化 xff0c 这里我们介绍go语言处理xml数据 encoding xml 包实现了一个简单的xml 1 0解析器 xff0c 可以理解xml名称空间 读取xml 示例 xff1a package
  • UC/OS-III 消息队列

    消息队列 一 消息队列基本概念讲解1 消息队列基本概念2 消息池2 1 消息池概念2 2 消息池初始化2 3 消息队列的运作机制2 4 消息队列的阻塞机制2 5 消息队列的应用场景 二 消息队列创建步骤1 定义消息队列2 创建消息队列 三
  • Altium Designer绘制stm32f103c8t6最小系统原理图

    文章目录 前言芯片封装自定义封装原理图绘制总结 前言 本文提供了初学者绘制stm32最小系统 xff0c 同时初学者的同学可以跟着小白学习绘制原理图哦 芯片封装 提示 xff1a 下载安装好Altium Designer之后才能进行以下操作
  • Jetson Xavier NX安装opencv3.x以及踩过的坑

    Jetson Xavier NX默认安装的是opencv4 x xff0c 在很多项目中其与opencv3 x xff0c 其中opencv3与opencv4中有部分函数是完全不同的 xff08 例如点一些Point的定义 xff0c Cv
  • 【导航算法】无人机路径跟踪L1导航算法

    L1导航算法是非常经典的非线性无人机路径跟随算法 xff0c 最早由MIT于2004年提出 xff0c 论文为 A New Nonlinear Guidance Logic for Trajectory Tracking xff0c 其导航
  • 【人工智能】1.问题求解:状态空间图和盲目搜索

    什么是问题求解 xff1f 问题求解可以理解为利用知识 xff0c 尽可能有效的找到问题的解 xff0c 或者最优解的过程 xff0c 主要包括 xff1a 1 xff09 问题描述方法 xff1a 状态空间法 xff0c 与或树表示法 x
  • 【路径规划】A*三维全局路径规划(附Python实现源码)

    1 A 启发式搜索 A 算法介绍 xff1a 启发式搜索算法 xff0c 除了wiki之外比较全的一个参考资料 xff1a A 启发式搜索算法详解 人工智能 这里是用Python写了一个简单的路径规划例子供参考 2 Matplotlib库
  • 【数据结构】3.图、最小生成树

    一 图的基本概念 1 什么是图 图表示一种多对多的关系 图包括 xff1a 1 xff09 一组顶点 xff1a 通常用 V Vertex 表示顶点集合 2 xff09 一组边 xff1a 通常用 E Edge 表示边的集合 3 xff09
  • 【NLP】主题模型文本分类

    自然语言处理之主题模型文本分类 LDA主题模型 1 主题模型 xff08 Topic Model xff09 主题模型是以非监督学习的方式对文集的隐含语义结构进行聚类的统计模型 主题模型主要被用于自然语言处理中的语义分析和文本挖掘问题 xf
  • 【NLP】Word2Vec模型文本分类

    自然语言处理之词向量模型聚类分析 Word Embedding 词嵌入向量 Word Embedding 是NLP里面一个重要的概念 xff0c 我们可以利用Word Embedding一个单词固定长度向量的表示一种表示形式 Word Em
  • (6.1)Kubernetes的Sevice服务间调用

    1 场景1 选择器 xff08 selector xff09 在k8s上运行了两个pod replicas 2 我们通过Service来整合这两个pod 在创建 Service 时 xff0c 就要通过选择器 xff08 selector