基于惯性轮倒立摆原理的自行车

2023-05-16

背景

自平衡车有很多种,其中一种是利用惯性轮倒立摆原理,早在2003年,日本的村田顽童就已经问世,它采用的就是惯性轮倒立摆原理。后来其他研究组织和个人纷纷效仿,制作出了五花八门的基于惯性轮倒立摆原理的直立机器人。

在2015年8月的飞思卡尔(现在是恩智浦)全国大学生智能车竞赛的创意组比赛中,规则就是要用任何直立车完成一圈比赛。其中有学校使用的方案就是惯性轮倒立摆。
北科惯性轮倒立摆自行车

还有一些其他的例子:
https://edgetriggered.wordpress.com/2012/02/22/its-alive/,这是有人在2012年2月实现的利用惯性轮倒立摆原理的独轮车。
http://www.guokr.com/post/713382/,2015年12月实现。

我目前在做的工作也和此相关,不过是把独轮车换成自行车,靠舵机转把来转向。该方案目前仍有很多问题,所以我把我的所有机械尺寸参数和硬件选型以及控制算法列出,如果有在做同样工作的朋友欢迎与我交流。

目前能实现的效果:

稳定直立5min以上:

https://v.qq.com/x/page/w0532v1s3zg.html

可以直行走一段距离:

https://v.qq.com/x/page/r0532ium7xw.html

机械结构

示意图:

平衡自行车示意图

实物图:

平衡自行车实物图

尺寸及重量:

自行车高(从地面到飞轮中心)320mm,长450mm,自行车重1.8kg。飞轮半径75mm,质量0.3kg。电池绑在自行车侧面,重0.2kg。

硬件选型

1.电机rs540 70t电机
https://item.taobao.com/item.htm?spm=a230r.1.14.257.ebb2eb2jEGU9c&id=15498785922&ns=1&abbucket=6#detail,选择的是70T,用来驱动飞轮。(不是打广告,从视频里可以看出,我确实用的就是这款电机)

2.180线AB相编码器,用来测量飞轮转速。

3.mpu6050,检测自行车的倾斜角度和角速度,没有用DMP功能,直接读取原始值用程序滤波。

控制程序

两个关键的函数:

1.飞轮转速补偿:(如果没有,飞轮转速在平衡过程中会一直上升,不能长时间稳定平衡)

void speed(void)
{
        speed_feedback = 0 - Encoder;                 //Encoder是飞轮转速
        speed_feedback_derror = speed_feedback - speed_feedback_pre;
        speed_feedback_pre = speed_feedback;
        speed_integral += speed_feedback * speed_i;
        Run = speed_feedback * speed_p + speed_integral + speed_d * speed_feedback_derror; //得到飞轮转速的补偿量,在后续计算过程中会用到。
}

2.电机转速计算:

void balance(void)
{
    //gyro_x是横滚角速度,gyro_xx是其微分
    gyro_xx = gyro_x-pre_gyro_x;
    pre_gyro_x = gyro_x;
    Angle_Balancenormal += gyro_x * kgyo1 + (accangle_x-Angle_Balancenormal) * gbtg1;     //正常互补滤波,需要调的参数有kgyo1和gbtg1
    Angle_Balancecal += gyro_x * kgyo2 + (accangle_x-Angle_Balancecal) * gbtg2 + Run;     //计算控制量用的互补滤波,需要调的参数有kgyo2和gbtg2
    Motor = Angle_Balancecal * stand_p + gyro_x * stand_d + gyro_xx * stand_i;            //计算最终电机转速。
}

最终控制是定时中断程序,定时中断间隔5ms,首先进行飞轮转速,车身横滚角速度和角度的采集,然后计算飞轮转速的补偿量,最后计算平衡需要的电机转速,通过pwm信号输出来控制电机。具体代码如下:

int TIM1_UP_IRQHandler(void)  
{    
    if(TIM1->SR&0X0001)                     //5ms定时中断
    {   
        TIM1->SR&=~(1<<0);              //===清除定时器1中断标志位 智能硬件置位,软件复位        
        Encoder=Read_Encoder(2);        //采集飞轮转速,采用的是AB相编码器
        Get_Angle();                    //采集mpu6050返回的角速度和角度
        speed();
        balance();
        Set_pwm(-Motor);                //===赋值给PWM寄存器  
    }           
    return 0;     
} 

关于控制程序中参数的调试问题

重要的参数有5个:

两个互补滤波参数,直立的pd,速控的p。

第一步:先调直立p,可以在平衡位置摆动,即偏离平衡位置可以轻微的越过平衡位置到另一边。

第二步:把第一步调好的p给0,再调直立d,感觉在平衡位置摆动有轻微阻力。加上第一步调好的p,可以直立2到3s甚至更长就算调好了d,这时飞轮转动不会收敛,最后会因转动速度过快倒下。

第三步:调试飞轮转速的p,调到可以直立1min甚至更长时间。

曾经推倒过数学模型,但是能力有限,还不能把数学模型直接转换为算法,参考了一些资料,按照自己的想法写了简单的控制算法,不足之处肯定会有,但还是实现了直立的功能。

欢迎有兴趣或者做过这方面东西的同道找我交流,QQ:1006325356。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

基于惯性轮倒立摆原理的自行车 的相关文章

  • 【第115期】世界一流大学计算机专业,都在用哪些书当教材?

    导读 xff1a 转眼间离新学期开学又不远了 清华 北大 MIT CMU 斯坦福的学霸们在新学期里要学什么 xff1f 本文就带你盘点一下那些世界名校计算机专业采用的教材 不用多说 xff0c 每本都是经典的烧脑技术书 xff0c 建议配合
  • 什么是AB实验?能解决什么问题?终于有人讲明白了

    导读 xff1a 走向身边的AB实验 作者 xff1a 木羊同学 来源 xff1a 大数据DT xff08 ID xff1a hzdashuju xff09 AB实验 是一个从统计学中借来的工具 我和大家一样 xff0c 每次只要看到 统计
  • 树莓派3b引脚图

    如上图所示 xff0c 我们可以很清楚的看到各个引脚的功能 例如我们想使用pwm引脚来控制舵机 xff0c 则我们可以考虑使用其中的 BCM18 PWM0 和 BCM13 PWM1 在使用wiringPi库时 xff0c 我们定义的引脚即B
  • 跟踪slab分配堆栈流程的方法(perf、systemtap)

    跟踪slab分配堆栈流程的方法 xff08 perf systemtap xff09 内存泄露是在解决内核故障会遇到的棘手情况 xff0c 根据具体的内存使用情况 xff0c 追踪相应slab cache的分配堆栈流程 xff0c 是追踪泄
  • prometheus+grafana监控mysql、canal服务器

    一 prometheus配置 1 prometheus安装 1 1官网下载安装包 xff1a https prometheus io download 1 2解压安装包 xff1a tar zxvf prometheus 2 6 1 lin
  • mac配置jmeter

    一 步骤 1 安装jdk1 8版本 xff0c 因为jmeter是基于java环境运行的 2 安装jmeter5 x版本 二 安装jdk 1 下载jdk Java Downloads Oracle 2 下载好之后安装 xff0c 全部下一步
  • 操作系统(四):动态链接与静态链接的区别

    在回答这个问题之前希望大家大概了解一个文件编译的过程 xff0c 比如一个C文件在编译成功后文件夹里的文件会有什么变化 xff0c 大家可以先去创建一个helloworld c的文件 xff0c 观察其编译后的变化 那么问题来了 面试官经常
  • 【OpenVINS】(一)ZUPT

    参考 xff1a Measurement Update Derivations Zero Velocity Update 在典型的自主汽车场景中 xff0c 传感器系统将在停止灯处变得静止 xff0c 其中动态物体 xff08 例如交叉路口
  • OpenVINS与MSCKF_VIO RK4积分对比

    VIO系统在使用IMU测量值进行状态预测时 xff0c 需要将连续时间的微分方程离散化为差分方程 xff0c 离散化的本质是积分 xff0c 根据数值积分近似程度不同 xff0c 常用的有欧拉法 中点法和四阶龙格库塔法等 xff0c Ope
  • 全盘拷贝linux系统,转移至另一硬盘

    首先制作ubuntu启动盘 xff0c 选择try ubuntu进入live ubuntu系统 查看需拷贝硬盘盘符 span class token function sudo span span class token function
  • EKF SLAM

    EKF 方法是解决 SLAM 问题的一种经典方法 xff0c 其应用依赖于运动模型和观测模型的高斯噪声假设 在 SLAM 问题首次提出不久后 xff0c Smith 和 Cheesman 及 Durrant Whyte对机器人和路标间的几何
  • 如何将立创EDA中的元器件的原理图/封装和3D模型导入AD的库中

    如何将立创EDA中的元器件的原理图 封装和3D模型导入AD的库中 工具 xff1a AD 立创EDA专业版 fusion360 或其他3D软件 导入原理图 封装 在立创商城复制所需元器件的编号 打开立创EDA标准版或专业版 xff0c 这里
  • Xshell 提示 “要继续使用此程序,您必须应用最新的更新或使用新版本“的解决方案

    要想解决Xshell提示更新最新版问题 有两种方案 方案一 手动修改系统时间 步骤如下 右键右下角时间 弹出如下窗口 2 选中 调整日期 时间 A 并点击 弹出如下页面 更改时间 更改成之前的年份 如下图 更改成功后 再打开相应的应用 Xs
  • 2020.2.22 排位赛 G - Bucket Brigade(BFS)

    Bucket Brigade 题面 题目分析 BFS模板题 代码 span class token macro property span class token directive keyword include span span cl
  • Canal入门(二)

    Canal入门 xff08 二 xff09 canal kafka quickStart 1 基本说明 canal 1 1 1版本之后 默认支持将canal server接收到的binlog数据直接投递到MQ 目前默认支持的MQ系统有 ka
  • PID调节三个参数的作用

    1 比例调节作用 xff1a 按比例反应系统的偏差 系统一旦出现了偏差 比例调节立即产生调节作用用以减少偏差 比例作用大 可 以加快调节 能迅速反应误差 xff0c 从而减小稳态误差 但是 xff0c 比例控制不能消除稳态误差 过大的比例
  • (centos7)docker+jenkins运行python自动化

    目录 一 实现思路 二 环境准备 1 在liunx上安装docker 2 docker安装jenkins 三 访问前设置 四 配置jenkins容器 五 jenkins插件安装 1 安装git 2 安装docker 3 html Publi
  • OJ在线编程常见输入输出练习

    OJ在线编程常见输入输出练习 4 a 43 b 4 输入描述 xff1a 输入数据包括多组 每组数据一行 每行的第一个整数为整数的个数n 1 lt 61 n lt 61 100 n为0的时候结束输入 接下来n个正整数 即需要求和的每个正整数
  • js中数组与集合的相互转化

    数组 gt 集合 var a 61 1 2 3 4 5 5 var set 61 new Set a console log set 1 2 3 4 5 集合 gt 数组 var set 61 new Set set add 1 set a
  • Linux make/Makefile详解

    会不会写makefile xff0c 从侧面说明了一个人是否具备完成大型工程的能力 一个工程中的源文件不计数 xff0c 其按类型 功能 模块分别放在若干个目录中 xff0c makefile定义了一系列的 规则来指定 xff0c 哪些文件

随机推荐

  • 大疆H20系列吊舱,录制的视频含义

  • 写算法的方法

    写算法步骤 xff1a xff08 以下方法 xff0c 都是老生常谈 但是非常简单有用 xff09 数据结构 xff08 所有的算法都是基于数据结构的操作 所有算法都是针对数据结构的属性进行操作 列出所有的属性 xff0c 写算法逐项修改
  • Windows系统下QT+OpenCasCAD仿真开发

    背景 最近开发了一个六自由度机械臂调姿平台的控制软件 xff0c 集成了API激光跟踪仪和KUKA机器人 xff0c 实现了根据产品的测量位姿驱动仿真环境中模型并且实现模型间的碰撞检测 其中KUKA机器人的控制可以参考笔者以前的博客 xff
  • 飞控IMU姿态估计流程

    飞控中使用加速度计 xff0c 陀螺仪 xff0c 磁罗盘进行姿态估计算法流程 step1 xff1a 获取陀螺仪 xff0c 加速度计 xff0c 磁罗盘的原始数值 step2 xff1a 陀螺仪 xff0c 加速度计减去固定的偏移后得到
  • 图拓扑关系可视化的qt实现

    前言 最近在做数据可视化的相关工作 xff0c 包括曲线图 xff0c 航迹图 xff0c 图结构 xff0c 树结构等 其中树结构相关的工作笔者以前曾经做过 xff0c 可以参考笔者以前的博客 qt自定义树形控件之一和qt自定义树形控件之
  • 基于qwt3D 的3D航迹图的实现

    前言 使用qt实现三维空间直角坐标系中的航迹实时绘制网上很难查到资料 在qt下实现3D绘图通常实现方式有OpenGL VTK qwt3d QtDataVisualization等 Qcharts QCustomPlot只支持2D绘图 这里给
  • 树莓派4b连接RealSense T265

    使用的是树莓派4 8G版本 准备连接RealSense T265的双目相机 T265目前官方编译好的的只有Ubuntu16和18 其他的系统版本需要自己编译realsense驱动 安装ubuntu20 10 https ubuntu com
  • Dockerfile文件解释

    一 先来看一个简单的 Dockerfile 这个Dockerfile作用是打一个python3项目环境 FROM python 3 alpine WORKDIR app ADD app RUN pip3 install r requirem
  • 一文读懂BLOB算法

    算法执行效果 相关参考资料 看着玩的 BLOB算法简述 https blog csdn net icyrat article details 6594574 话说这老哥写的也太 简 了吧 完全口水话 把blob算法说的很神秘 说什么把blo
  • Sobel算法优化 AVX2与GPU

    国庆假期 一口气肝了10篇博客 基本上把最近的成果都做了遍总结 假期最后一天 以一个比较轻松的博客主题结束吧 这次是Sobel算法的AVX2优化 执行效果 sobel算法的原理 使用如下的卷积核 c 硬写 span class token
  • 随机Hough直线算法的改进

    背景介绍 随机Hough直线算法相比Hough直线算法 xff0c 算法效率会有提高 xff0c 但仍不能满足工程需求 因此提出使用生长的随机Hough直线算法 该算法对随机Hough直线算法进行改造 xff0c 在随机选点转到Hough空
  • MATLAB编写的读取.mat文件数据并画曲线图的gui程序

    matlab编写的读取sd卡数据的gui程序 界面截图 xff1a 打开文件界面 xff1a 导入数据后截图 xff1a 是不是高端大气上档次 xff0c 不要急 xff0c 慢慢往下看 xff0c 后面更精彩 xff0c 代码会贴出来的
  • px4飞控位置估计lpe移植到vs

    本文主要内容 px4飞控的位置估计有两种方式 xff0c 一是inav xff0c 二是lpe xff0c 用到的传感器用加速度计 xff0c 磁场传感器 xff0c gps xff0c 超声 xff0c 激光 xff0c 气压 xff0c
  • 常见的信号平滑处理方法

    本文介绍了常见的信号平滑处理方法 xff1a xff08 一阶滤波 xff0c 互补滤波 xff0c 卡尔曼滤波 xff09
  • PX4代码学习系列博客(1)——开发环境配置

    写在前面 虽然有很多关于px4博客 xff0c 但还是想自己亲手写 xff0c 一来记录自己的学习过程 xff0c 以备将来复习 xff0c 二来方便后来者参考学习 xff0c 好多西当然要大家分享 关于px4飞控程序的博客 xff0c 我
  • PX4代码学习系列博客(3)——px4固件目录结构和代码风格

    写在前面 px4不是普通的单片机程序 xff0c 其中没有main函数 它实际上是一个操作系统 xff0c 上面运行着很多应用程序 xff08 类比windows xff09 xff0c 比如姿态解算 xff0c 位置解算 xff0c 姿态
  • PX4代码学习系列博客(5)——在px4中添加自己的模块

    怎么在px4中添加自己的模块 在 px4固件目录结构和代码风格 这一节 xff0c 曾经说过NuttX是一个实时的嵌入式系统 xff0c 上面可以像windows那样运行程序 那既然是应用程序 xff0c 那我们应该也能写一些可以在Nutt
  • PX4代码学习系列博客(6)——offboard模式位置控制代码分析

    分析offboard模式的代码需要用到以下几个模块 local position estimator mavlink mc pos control mc att control mixer 程序数据走向 mavlink 一般的offboar
  • selenium安装

    一 安装webdriver 1 下载安装包 下载地址 xff1a CNPM Binaries Mirror 注意 xff1a 下载版本应与自己的chrome的大版本一致 chrome版本查看 xff0c 设置 gt 关于chrome xff
  • 基于惯性轮倒立摆原理的自行车

    背景 自平衡车有很多种 xff0c 其中一种是利用惯性轮倒立摆原理 xff0c 早在2003年 xff0c 日本的村田顽童就已经问世 xff0c 它采用的就是惯性轮倒立摆原理 后来其他研究组织和个人纷纷效仿 xff0c 制作出了五花八门的基