PX4代码学习系列博客(6)——offboard模式位置控制代码分析

2023-05-16

分析offboard模式的代码需要用到以下几个模块

local_position_estimator
mavlink
mc_pos_control
mc_att_control
mixer

程序数据走向

mavlink

一般的offboard模式需要给飞控发送两条mavlink消息:

//飞控在接收到mavlink设置点消息的时候执行下面函数
void MavlinkReceiver::handle_message_set_position_target_local_ned(mavlink_message_t *msg)
{
    //这个函数把消息解析后发布了两个消息:
    //offboard_control_mode和position_setpoint_triplet
}
//飞控在接收到mavlink当前点消息用来进行外部位置估计的时候执行下面函数
void MavlinkReceiver::handle_message_att_pos_mocap(mavlink_message_t *msg)
{
    //这个函数把消息解析后发布消息:
    //att_pos_mocap
}

首先分析handle_message_set_position_target_local_ned这个函数发出的两条消息各是什么内容
发出的offboard_control_mode_s结构体:

offboard_control_mode.timestamp = hrt_absolute_time();
offboard_control_mode.ignore_position = (bool)(set_position_target_local_ned.type_mask & 0x7);
offboard_control_mode.ignore_alt_hold = (bool)(set_position_target_local_ned.type_mask & 0x4);
offboard_control_mode.ignore_velocity = (bool)(set_position_target_local_ned.type_mask & 0x38);
offboard_control_mode.ignore_acceleration_force = (bool)(set_position_target_local_ned.type_mask & 0x1C0);
bool is_force_sp = (bool)(set_position_target_local_ned.type_mask & (1 << 9));
offboard_control_mode.ignore_attitude = (bool)(set_position_target_local_ned.type_mask & 0x400);
offboard_control_mode.ignore_bodyrate = (bool)(set_position_target_local_ned.type_mask & 0x800);

读取的vehicle_control_mode_s结构体判断当前是否是offboard模式,如果是则发送position_setpoint_triplet消息
发出的position_setpoint_triplet_s结构体:

pos_sp_triplet.current.type
pos_sp_triplet.timestamp = hrt_absolute_time();
pos_sp_triplet.previous.valid = false;
pos_sp_triplet.next.valid = false;
pos_sp_triplet.current.valid = true;
pos_sp_triplet.current.position_valid = true;
pos_sp_triplet.current.x = set_position_target_local_ned.x;
pos_sp_triplet.current.y = set_position_target_local_ned.y;
pos_sp_triplet.current.z = set_position_target_local_ned.z;
pos_sp_triplet.current.velocity_valid = true;
pos_sp_triplet.current.vx = set_position_target_local_ned.vx;
pos_sp_triplet.current.vy = set_position_target_local_ned.vy;
pos_sp_triplet.current.vz = set_position_target_local_ned.vz;
pos_sp_triplet.current.acceleration_valid = true;
pos_sp_triplet.current.a_x = set_position_target_local_ned.afx;
pos_sp_triplet.current.a_y = set_position_target_local_ned.afy;
pos_sp_triplet.current.a_z = set_position_target_local_ned.afz;
pos_sp_triplet.current.acceleration_is_force = is_force_sp;
pos_sp_triplet.current.yaw_valid = true;
pos_sp_triplet.current.yaw = set_position_target_local_ned.yaw;
pos_sp_triplet.current.yawspeed_valid = true;
pos_sp_triplet.current.yawspeed = set_position_target_local_ned.yaw_rate;

local_position_estimator

在Firmware\src\modules\local_position_estimator\sensors下的mocap.cpp中有这么一行

static const uint32_t       MOCAP_TIMEOUT =     200000; // 0.2 s

这代表att_pos_mocap消息的发送频率必须大于5Hz,不然就会timeout,但是在实际测试过程中,发送的频率在30Hz以上才能稳定不timeout,这是因为它的程序写的太苛刻,只要每两帧有效数据的时间戳间隔大于0.2s就会timeout。

在Firmware\src\modules\local_position_estimator下的BlockLocalPositionEstimator.cpp中有这么一段

if (mocapUpdated) {
    if (_sensorTimeout & SENSOR_MOCAP) 
    {
        mocapInit();
    {
        mocapCorrect();
    }
}

只要超时就会重新初始化。

如果外部估计的位置足够精确,可以选择不用飞控上的其他传感器,可以在参数LPE_FUSION中设置。

mc_pos_control

然后转到旋翼的位置控制模块:
在目录E:\github\Firmware\src\modules\mc_pos_control下的mc_pos_control_main.cpp文件
打开task_main函数,发现

_pos_sp_triplet_sub = orb_subscribe(ORB_ID(position_setpoint_triplet));
_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));

它订阅了position_setpoint_triplet和vehicle_control_mode这两个消息。
然后是

update_velocity_derivative();
//这个函数用来更新速度偏差,如果目标位置丢失,则速度偏差为0。
do_control(dt);
//这里面的一些分支判断用的是vehicle_control_mode_s这个结构体。

do_control调用了

control_non_manual(dt);

control_non_manual调用了

control_offboard(dt);
control_position();

control_offboard用来判断是位置控制还是姿态控制并把控制量获取并发布。
我这里用的是位置和偏航角控制,所以在这个函数中执行的内容有

_pos_sp(0) = _pos_sp_triplet.current.x;
_pos_sp(1) = _pos_sp_triplet.current.y;
_run_pos_control = true;
_hold_offboard_xy = false;
_att_sp.yaw_body = _pos_sp_triplet.current.yaw;

最后发布vehicle_local_position_setpoint这个消息

_local_pos_sp.timestamp = hrt_absolute_time();
_local_pos_sp.x = _pos_sp(0);
_local_pos_sp.y = _pos_sp(1);
_local_pos_sp.z = _pos_sp(2);
_local_pos_sp.yaw = _att_sp.yaw_body;
_local_pos_sp.vx = _vel_sp(0);
_local_pos_sp.vy = _vel_sp(1);
_local_pos_sp.vz = _vel_sp(2);
orb_advertise(ORB_ID(vehicle_local_position_setpoint), &_local_pos_sp);

control_position调用calculate_velocity_setpoint函数和calculate_thrust_setpoint函数,calculate_velocity_setpoint根据位置偏差计算速度偏差,里面代码不长,直接贴出

void MulticopterPositionControl::control_position(float dt)
{
    calculate_velocity_setpoint(dt);

    if (_control_mode.flag_control_climb_rate_enabled || _control_mode.flag_control_velocity_enabled ||
        _control_mode.flag_control_acceleration_enabled) 
    {
        calculate_thrust_setpoint(dt);

    } else {
        _reset_int_z = true;
    }
}

在计算速度设置点函数calculate_velocity_setpoint中:

/* run position & altitude controllers, if enabled (otherwise use already computed velocity setpoints) */
if (_run_pos_control) 
{

    // If for any reason, we get a NaN position setpoint, we better just stay where we are.
    if (PX4_ISFINITE(_pos_sp(0)) && PX4_ISFINITE(_pos_sp(1))) 
    {
        _vel_sp(0) = (_pos_sp(0) - _pos(0)) * _params.pos_p(0);
        _vel_sp(1) = (_pos_sp(1) - _pos(1)) * _params.pos_p(1);

    } else 
    {
        _vel_sp(0) = 0.0f;
        _vel_sp(1) = 0.0f;
        warn_rate_limited("Caught invalid pos_sp in x and y");

    }
}

limit_altitude();

if (_run_alt_control) 
{
    if (PX4_ISFINITE(_pos_sp(2))) 
    {
        _vel_sp(2) = (_pos_sp(2) - _pos(2)) * _params.pos_p(2);

    } else 
    {
        _vel_sp(2) = 0.0f;
        warn_rate_limited("Caught invalid pos_sp in z");
    }
}
//后面是对起飞速度的设置和各个方向速度的一个限制。

calculate_thrust_setpoint函数根据速度设置点计算姿态设置点然后发布姿态设置点vehicle_attitude_setpoint。

mc_att_control

再转到姿态控制模块
它订阅了vehicle_control_mode和vehicle_attitude_setpoint这两个消息。

_v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
_v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));

姿态控制模块把姿态设置点转换为需要的角速度。
从位置设置点到最后的三个方向的设置角速度,中间代码仔细分析比较复杂,具体的数学公式整理起来是一个浩大的工程,一个大概的思路是:

这里写图片描述

这个模块把姿态设置点转化为角速率设置点,然后在mixer中控制电机。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

PX4代码学习系列博客(6)——offboard模式位置控制代码分析 的相关文章

  • PX4 Offboard Control with MAVROS--Takeoff(一键起飞)

    警告 xff1a 请先在仿真环境下进行测试 xff0c 能达到预期效果后在进行实际飞行测试 xff0c 以免发生意外 本篇文章只是用作学习交流 xff0c 实际飞行时如出现意外情况作者不予以负责 所需材料 1 PIXhawk或者Pixrac
  • 编译PX4固件

    PX4编译 文章目录 PX4编译疑难杂症bug1bug2catkin build isolated 官方脚本Step1Step2 安装常用依赖Step3 创建并运行脚本Step4 补全代码子模块Step5 验证仿真 官方offboard 例
  • 飞行机器人(七)仿真平台XTDrone + PX4编译

    0 编译PX4固件 参考仿真平台基础配置教程 xff08 中文详细教程 xff09 仿真平台基础配置 语雀 yuque com https www yuque com xtdrone manual cn basic config 按照教程
  • PX4 GAZEBO无人机添加相机并进行图像识别

    PX4 GAZEBO无人机添加摄像头并进行图像识别 在之前完成了ROS的安装和PX4的安装 xff0c 并可以通过roslaunch启动软件仿真 接下来为无人及添加相机 xff0c 并将图像用python函数读取 xff0c 用于后续操作
  • 基于F4/F7/H7飞控硬件和px4飞控固件的廉价自主无人机系统(1)-飞控

    前言 穿越机F4 F7 H7飞控是一系列采用stm32系列F4xx和F7xx处理器的飞控的统称 xff0c 是目前穿越机爱好者非常喜欢使用的飞控硬件 xff0c 其价格也非常便宜180 xff5e 410 而px4则是一款常见的开源飞控固件
  • px4源码编译指南

    px4源码编译指南 强烈推荐大家去看官网的英文文档 xff0c 国内的博客杂七杂八 xff0c 官网的中文也很久没有更新 xff0c 这几天自己踩了很多坑 xff0c 写个教程希望能帮助到大家 xff08 本文选用平台是pixhawk1 1
  • PX4飞控之PWM输出控制

    PX4飞控之PWM输出控制 多旋翼电调如好盈XRotor xff0c DJI通用电调等都支持PWM信号来传输控制信号 常用的400Hz电调信号对应周期2500us xff0c 一般使用高电平时间1000us 2000us为有效信号区间 xf
  • 初学PX4之环境搭建

    文章转自 xff1a http www jianshu com p 36dac548106b 前言 前段时间linux崩溃了 xff0c 桌面进去后只有背景 xff0c 折腾好久没搞定 xff0c 为了节省时间索性重装了系统 xff0c 同
  • PX4 ---- Mixer

    文章目录 Mixer 混合控制 作用输入输出装载混控文件MAVROS代码解析总结示例MAINAUX Mixer 混合控制 作用 经过位置控制和姿态控制后 xff0c 控制量通过 actuator controls发布 xff0c 其中 co
  • PX4模块设计之一:SITL & HITL模拟框架

    PX4模块设计之一 xff1a SITL amp HITL模拟框架 1 模拟框架1 1 SITL模拟框架1 2 HITL模拟框架 2 模拟器类型3 MAVLink API4 总结 基于PX4开源软件框架简明简介的框架设计 xff0c 逐步分
  • PX4模块设计之二十四:内部ADC模块

    PX4模块设计之二十四 xff1a 内部ADC模块 1 内部ADC模块简介2 模块入口函数2 1 主入口board adc main2 2 自定义子命令custom command 3 内部ADC模块重要函数3 1 task spawn3
  • PX4模块设计之三十九:Commander模块

    PX4模块设计之三十九 xff1a Commander模块 1 Commander模块简介2 模块入口函数2 1 主入口commander main2 2 自定义子命令custom command 3 Commander模块重要函数3 1
  • PX4模块设计之四十三:icm20689模块

    PX4模块设计之四十三 xff1a icm20689模块 1 icm20689模块简介2 模块入口函数2 1 主入口icm20689 main2 2 自定义子命令custom command2 3 模块状态print status 重载 3
  • px4下载指定版本的固件、git用法

    https hub fastgit org PX4 PX4 Autopilot git describe tag 查看当前版本号 git tag l 查看所有版本 xff0c 也就是打个tag git checkout v1 9 1 跳转到
  • PX4软件在环仿真注意点

    注 xff1a 最新内容参考PX4 user guide 点击此处 PX4下载指定版本代码和刷固件的三种方式 点击此处 PX4sitl固件编译方法 点击此处 PX4开发指南 点击此处 PX4无人机仿真 Gazebo 点击此处 px4仿真 知
  • PX4 OffBoard Control

    终于还是走上了这一步 xff0c 对飞控下手 xff0c 可以说是一张白纸了 记录一下学习的过程方便以后的查阅 目录 一 ubuntu18 04配置px4编译环境及mavros环境 二 PX4的OffBoard控制 1 搭建功能包 2 编写
  • 步骤三:PX4,Mavros的下载安装及代码测试

    1 安装Mavros sudo apt install ros melodic mavros ros melodic mavros extras 2 安装Mavros相关的 geographiclib dataset 此处已经加了ghpro
  • PX4之常用函数解读

    PX4Firmware 经常有人将Pixhawk PX4 APM还有ArduPilot弄混 这里首先还是简要说明一下 xff1a Pixhawk是飞控硬件平台 xff0c PX4和ArduPilot都是开源的可以烧写到Pixhawk飞控中的
  • Offboard仿真时出现CMD: Unexpected command 176, result 0

    在用PX4 43 gazebo 43 ROS仿真offboard例程时 xff0c 如果出现以下问题 xff1a 运行以下命令 xff1a roslaunch mavros px4 launch fcu url span class tok
  • 飞行姿态解算(三)

    继之前研究了一些飞行姿态理论方面的问题后 又找到了之前很流行的一段外国大神写的代码 来分析分析 第二篇文章的最后 讲到了文章中的算法在实际使用中有重大缺陷 大家都知道 分析算法理论的时候很多情况下我们没有考虑太多外界干扰的情况 原因是很多情

随机推荐

  • js中数组与集合的相互转化

    数组 gt 集合 var a 61 1 2 3 4 5 5 var set 61 new Set a console log set 1 2 3 4 5 集合 gt 数组 var set 61 new Set set add 1 set a
  • Linux make/Makefile详解

    会不会写makefile xff0c 从侧面说明了一个人是否具备完成大型工程的能力 一个工程中的源文件不计数 xff0c 其按类型 功能 模块分别放在若干个目录中 xff0c makefile定义了一系列的 规则来指定 xff0c 哪些文件
  • 大疆H20系列吊舱,录制的视频含义

  • 写算法的方法

    写算法步骤 xff1a xff08 以下方法 xff0c 都是老生常谈 但是非常简单有用 xff09 数据结构 xff08 所有的算法都是基于数据结构的操作 所有算法都是针对数据结构的属性进行操作 列出所有的属性 xff0c 写算法逐项修改
  • Windows系统下QT+OpenCasCAD仿真开发

    背景 最近开发了一个六自由度机械臂调姿平台的控制软件 xff0c 集成了API激光跟踪仪和KUKA机器人 xff0c 实现了根据产品的测量位姿驱动仿真环境中模型并且实现模型间的碰撞检测 其中KUKA机器人的控制可以参考笔者以前的博客 xff
  • 飞控IMU姿态估计流程

    飞控中使用加速度计 xff0c 陀螺仪 xff0c 磁罗盘进行姿态估计算法流程 step1 xff1a 获取陀螺仪 xff0c 加速度计 xff0c 磁罗盘的原始数值 step2 xff1a 陀螺仪 xff0c 加速度计减去固定的偏移后得到
  • 图拓扑关系可视化的qt实现

    前言 最近在做数据可视化的相关工作 xff0c 包括曲线图 xff0c 航迹图 xff0c 图结构 xff0c 树结构等 其中树结构相关的工作笔者以前曾经做过 xff0c 可以参考笔者以前的博客 qt自定义树形控件之一和qt自定义树形控件之
  • 基于qwt3D 的3D航迹图的实现

    前言 使用qt实现三维空间直角坐标系中的航迹实时绘制网上很难查到资料 在qt下实现3D绘图通常实现方式有OpenGL VTK qwt3d QtDataVisualization等 Qcharts QCustomPlot只支持2D绘图 这里给
  • 树莓派4b连接RealSense T265

    使用的是树莓派4 8G版本 准备连接RealSense T265的双目相机 T265目前官方编译好的的只有Ubuntu16和18 其他的系统版本需要自己编译realsense驱动 安装ubuntu20 10 https ubuntu com
  • Dockerfile文件解释

    一 先来看一个简单的 Dockerfile 这个Dockerfile作用是打一个python3项目环境 FROM python 3 alpine WORKDIR app ADD app RUN pip3 install r requirem
  • 一文读懂BLOB算法

    算法执行效果 相关参考资料 看着玩的 BLOB算法简述 https blog csdn net icyrat article details 6594574 话说这老哥写的也太 简 了吧 完全口水话 把blob算法说的很神秘 说什么把blo
  • Sobel算法优化 AVX2与GPU

    国庆假期 一口气肝了10篇博客 基本上把最近的成果都做了遍总结 假期最后一天 以一个比较轻松的博客主题结束吧 这次是Sobel算法的AVX2优化 执行效果 sobel算法的原理 使用如下的卷积核 c 硬写 span class token
  • 随机Hough直线算法的改进

    背景介绍 随机Hough直线算法相比Hough直线算法 xff0c 算法效率会有提高 xff0c 但仍不能满足工程需求 因此提出使用生长的随机Hough直线算法 该算法对随机Hough直线算法进行改造 xff0c 在随机选点转到Hough空
  • MATLAB编写的读取.mat文件数据并画曲线图的gui程序

    matlab编写的读取sd卡数据的gui程序 界面截图 xff1a 打开文件界面 xff1a 导入数据后截图 xff1a 是不是高端大气上档次 xff0c 不要急 xff0c 慢慢往下看 xff0c 后面更精彩 xff0c 代码会贴出来的
  • px4飞控位置估计lpe移植到vs

    本文主要内容 px4飞控的位置估计有两种方式 xff0c 一是inav xff0c 二是lpe xff0c 用到的传感器用加速度计 xff0c 磁场传感器 xff0c gps xff0c 超声 xff0c 激光 xff0c 气压 xff0c
  • 常见的信号平滑处理方法

    本文介绍了常见的信号平滑处理方法 xff1a xff08 一阶滤波 xff0c 互补滤波 xff0c 卡尔曼滤波 xff09
  • PX4代码学习系列博客(1)——开发环境配置

    写在前面 虽然有很多关于px4博客 xff0c 但还是想自己亲手写 xff0c 一来记录自己的学习过程 xff0c 以备将来复习 xff0c 二来方便后来者参考学习 xff0c 好多西当然要大家分享 关于px4飞控程序的博客 xff0c 我
  • PX4代码学习系列博客(3)——px4固件目录结构和代码风格

    写在前面 px4不是普通的单片机程序 xff0c 其中没有main函数 它实际上是一个操作系统 xff0c 上面运行着很多应用程序 xff08 类比windows xff09 xff0c 比如姿态解算 xff0c 位置解算 xff0c 姿态
  • PX4代码学习系列博客(5)——在px4中添加自己的模块

    怎么在px4中添加自己的模块 在 px4固件目录结构和代码风格 这一节 xff0c 曾经说过NuttX是一个实时的嵌入式系统 xff0c 上面可以像windows那样运行程序 那既然是应用程序 xff0c 那我们应该也能写一些可以在Nutt
  • PX4代码学习系列博客(6)——offboard模式位置控制代码分析

    分析offboard模式的代码需要用到以下几个模块 local position estimator mavlink mc pos control mc att control mixer 程序数据走向 mavlink 一般的offboar