C语言字节对齐详解

2023-05-16

C语言字节对齐12345

不同系统下的C语言类型长度

Data TypeILP32ILP64LP64LLP64
char8888
short16161616
int32643232
long32646432
long long64646464
pointer32646464

绝大部分64位的Unix,linux都是使用的LP64模型;32位Linux系统是ILP32模型;64位的Windows使用的是LLP64(long long and point 64)模型。

基本概念

许多计算机系统对基本数据类型合法地址做出了一些限制,要求某种类型对象的地址必须是某个值K(通常是2,4或8)的倍数。这种对齐限制简化了形成处理器和存储器系统之间的接口的硬件设计。对齐跟数据在内存中的位置有关。如果一个变量的内存地址正好位于它长度的整数倍,他就被称做自然对齐。比如在32位cpu下,假设一个整型变量的地址为0x00000004,那它就是自然对齐的。

为什么要字节对齐

需要字节对齐的根本原因在于CPU访问数据的效率问题。例如,假设一个处理器总是从存储器中取出8个字节,则地址必须为8的倍数。如果我们能保证将所有的double类型数据的地址对齐成8的倍数,那么就可以用一个存储器操作来读或者写值了。否则,我们可能需要执行两次存储器访问,因为对象可能被分放在两个8字节存储块中。

另外,假设一个整型变量的地址不是自然对齐,比如为0x00000002,则CPU如果取它的值的话需要访问两次内存,第一次取从0x00000002-0x00000003的一个short,第二次取从0x00000004-0x00000005的一个short然后组合得到所要的数据;如果变量在0x00000003地址上的话则要访问三次内存,第一次为char,第二次为short,第三次为char,然后组合得到整型数据。而如果变量在自然对齐位置上,则只要一次就可以取出数据。

各个硬件平台对存储空间的处理上有很大的不同,一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐。比如sparc系统,如果取未对齐的数据会发生错误,举个例:

char ch[8];
char *p = &ch[1];
int i = *(int *)p;

运行时会报segment error,而在x86上就不会出现错误,只是效率下降。

如何处理字节对齐

先让我们看编译器是按照什么样的原则进行对齐的:

  1. 数据类型自身的对齐值:为指定平台上基本类型的长度。对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
  2. 结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
  3. 指定对齐值:#pragma pack (value)时的指定对齐值value。
  4. 数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。

对于标准数据类型,它的地址只要是它的长度的整数倍就行了,而非标准数据类型按下面的原则对齐:
数组 :按照基本数据类型对齐,第一个对齐了后面的自然也就对齐了。
联合 :按其包含的长度最大的数据类型对齐。
结构体: 结构体中每个数据类型都要对齐。

当数据类型为结构体时,编译器可能需要在结构体字段的分配中插入间隙,以保证每个结构元素都满足它的对齐要求。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放(对于非对齐成员需要在其前面填充一些字节,保证其在对齐位置上),结构体本身也要根据自身的有效对齐值圆整(就是结构体总长度需要是结构体有效对齐值的整数倍),此时可能需要在结构末尾填充一些空间,以满足结构体整体的对齐—-向结构体元素中最大的元素对齐。

通过上面的分析,对结构体进行字节对齐,我们需要知道四个值:

  • 指定对齐值:代码中指定的对齐值,记为packLen;
  • 默认对齐值:结构体中每个数据成员及结构体本身都有默认对齐值,记为defaultLen;
  • 成员偏移量:即相对于结构体起始位置的长度,记为offset;
  • 成员长度:结构体中每个数据成员的长度(注结构体成员为补齐之后的长度),记为memberLen。

及两个规则:

  1. 对齐规则: offset % vaildLen = 0,其中vaildLen为有效对齐值vaildLen = min(packLen, defaultLen)
  2. 填充规则: 如成员变量不遵守对齐规则,则需要对其补齐;在其前面填充一些字节保证该成员对齐。需填充的字节数记为pad

Linux和Microsoft Windows的对齐方式

一.Linux的对齐策略:

在Linux中2字节数据类型(例如short)的地址必须是2的倍数,而较大的数据类型(例如int,int *,float和double)的地址必须是4的倍数。也就是说Linux下要么2字节对齐,要么4字节对齐,没有其他格式的对齐。

二.Microsoft Windows的对齐策略:

在Windows中对齐要求更严–任何K字节基本对象的地址都必须是K的倍数,K=2,4,或者8.特别地,double或者long long类型数据的地址应该是8的倍数。可以看出Windows的对齐策略和Linux还是不同的。

更改C编译器的缺省字节对齐方式

在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配空间。一般地,可以通过下面的方法来改变缺省的对界条件:

  • 使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。
  • 使用伪指令#pragma pack (),取消自定义字节对齐方式。

另外,还有如下的一种方式:

  • __attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。
  • __attribute__ ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。

字节对齐的作用不仅是便于cpu快速访问,同时合理的利用字节对齐可以有效地节省存储空间。

对于32位机来说,4字节对齐能够使cpu访问速度提高,比如说一个long类型的变量,如果跨越了4字节边界存储,那么cpu要读取两次,这样效率就低了。但是在32位机中使用1字节或者2字节对齐,反而会使变量访问速度降低。所以这要考虑处理器类型,另外还得考虑编译器的类型。在vc中默认是4字节对齐的,GNU gcc 也是默认4字节对齐。

什么时候需要设置对齐

在设计不同CPU下的通信协议时,或者编写硬件驱动程序时寄存器的结构这两个地方都需要按一字节对齐。即使看起来本来就自然对齐的也要使其对齐,以免不同的编译器生成的代码不一样.

结构体举例

例子1

/************************
    > File Name: struct_test.c
    > Author:Marvin
    > Created Time: Thu 22 Mar 2018 07:19:46 PM CST
 **********************/

#include<stdio.h>


int main()
{
    struct test {
        char a;
        short b;
        int c;
        long d;
    };
    struct test t = {'a',11,11,11};

    printf("size of struct t = %u\n", sizeof(t));

    return 0;
}

在64位centos上编译编译后结构struct test的布局如下:

struct_ex1

由于要保证结构体每个元素都要数据对齐,因此必须在a和b之间插入1字节的间隙使得后面的short元素2字节对齐int元素4字节对齐long元素8字节对齐,这样最终test结构大小为16字节。

运行程序结果为:

size of struct t = 16

例子2

现在考虑这样一个结构体:

struct test2 {
    int a;
    long b;
    char c;
};
struct test2 t2 = {11,11,'c'};

在64位centos上编译编译后结构struct test2的布局如下:

struct_ex2

结构体struct test2的自然对界条件为8字节,所以需要在最后的char型数据后面再填充7个字节使得结构体整体对齐。

运行程序结构为

size of struct test2 = 24

例子3

不妨将结构体struct test2里面成员的顺序重新排列一下:

struct test3 {
    char c;
    int a;
    long b;
};
struct test3 t3 = {'c',11,11};

在64位centos上编译编译后结构struct test2的布局如下:

struct_ex3

运行结果为:

size of struct test3 = 16

可见适当地编排结构体成员地顺序,可以在保存相同信息地情况下尽可能节约内存空间。

例子4

struct B
{
char b;
int a;
short c;
};

假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求,0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了,因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组的存取效率,试想如果我们定义了一个结构B的数组,那么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的,如果我们不把结构的大小补充为4的整数倍,那么下一个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐大小的整数倍.其实诸如:对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,这些已有类型的自身对齐值也是基于数组考虑的,只是因为这些类型的长度已知了,所以他们的自身对齐值也就已知了.
例子5

#pragma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/

第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1=0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放在0x0006、0x0007中,符合0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

对于结构体嵌套地情况,结构体对齐算法思想:深度优先填充。

padLen = getPadLen(offset , defaultLen);
int getPadLen(int offsetLen, int defaultLen)
{
  int vaildLen = min(packLen,defaultLen);
  if(0 == vaildLen || 0 == offsetLen % vaildLen)
  {
    return 0;
  }
  return vaildLen - (offsetLen % vaildLen);
}

先对齐内层结构体:对每个数据成员计算其defaultLen、memberLen和offset;

再遍历每个数据成员时计算:对于基本数据类型成员defaultLen=memberLen;对于结构体成员defaultLen等于它的所有成员的最大的memberLen;遍历时对成员的memberLen进行累加,得到当前成员的offsetLen;

运用对齐及填充规则:在当前结构体成员前填充padLen个字节;

下面是结构体作为成员的例子:

struct test1 {
    int a;
    long b;
};
struct test4 {
    char a;
    struct test1 b;
    int c;
};
struct test4 t4 = {'a', {11,11},11}

test1的内存分布:

struct_ex6-1

test4的内存分布:

struct_ex6-2

字节对齐可能带来的隐患

代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:

unsigned int i = 0x12345678;
unsigned char *p=NULL;
unsigned short *p1=NULL;

p=&i;
*p=0x00;
p1=(unsigned short *)(p+1);
*p1=0x0000;

最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。
在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐.

如何查找与字节对齐方面的问题

如果出现对齐或者赋值问题首先查看

  1. 编译器的big little端设置
  2. 看这种体系本身是否支持非对齐访问
  3. 如果支持看设置了对齐与否,如果没有则看访问时需要加某些特殊的修饰来标志其特殊访问操作

举例:

#include<iostream>

using namespace std;

//windows 64 位默认 结构体对齐系数为8,32位 结构体对齐系数为4

//测试系统对齐系数
// #pragma pack(8)  my_struct_1 为16字节
// #pragma pack(4)  my_struct_1 为12字节
// 不加#pragma pack(8)  my_struct_1 为16字节
//顾系统默认对齐系数为8

struct my_struct_1
{
    char a;     //1
    double b;   //之前补7 +8     8/8==1
};

#pragma pack(4)
struct my_struct_2
{
    char a;    //1
    double b;  //3+8
    int c;     //4     16/4=4
};
#pragma pack()

#pragma pack(2)
struct my_struct_3
{
    char a;    //1
    double b;  //1+8
    int c;     //4     14/2
};
#pragma pack()

#pragma pack(4)
struct my_struct_4
{
    char a[5];  //5
    double b;   //3+8   16/4
};
#pragma pack()

#pragma pack(2)
struct my_struct_5
{
    char a[5];  //5
    double b;   //1+8   14/2
};
#pragma pack()

#pragma pack(4)
struct my_struct_6
{
    char a;    //1
    char b[3]; //3
    char c;    //1   1+3+1
};
#pragma pack()

#pragma pack(4)
struct my_struct_7
{
    char a;    //1
    char b[3]; //3
    char c;    //1   
    int d;     //补齐 3 +4 
};
#pragma pack()

#pragma pack(4)
struct test
{
char x1;   //1
short x2;  //补齐1+ 2
float x3;  //4
char x4;   //1 补齐+3  
};
#pragma pack()

int main()
{
    cout<<"char:"<<sizeof(char)<<endl;
    cout<<"short:"<<sizeof(short)<<endl;
    cout<<"int:"<<sizeof(int)<<endl;
    cout<<"long:"<<sizeof(long)<<endl;
    cout<<"float:"<<sizeof(float)<<endl;
    cout<<"double:"<<sizeof(double)<<endl;
    cout<<"long double:"<<sizeof(long double)<<endl;

    cout<<sizeof(my_struct_1)<<endl;//8
    cout<<sizeof(my_struct_2)<<endl;//16
    cout<<sizeof(my_struct_3)<<endl;//14
    cout<<sizeof(my_struct_4)<<endl;//16
    cout<<sizeof(my_struct_5)<<endl;//14
    cout<<sizeof(my_struct_6)<<endl;//5
    cout<<sizeof(my_struct_7)<<endl;//12

    cout<<sizeof(test)<<endl;//12

    system("pause");
    return 0;
}

  1. 解析C语言中结构体struct的对齐问题 ↩
  2. 彻底搞清计算结构体大小和数据对齐原则 ↩
  3. 知识点总结——结构体大小、内存对齐方式 ↩
  4. C语言字节对齐、结构体对齐最详细的解释 ↩
  5. 深入理解计算机系统原书第2版 ↩
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C语言字节对齐详解 的相关文章

  • 无人机电池似乎可以并联,串联组合

    之前总是见到这种奇怪的线 xff0c 一直不知道作什么用 xff0c 现在大概清楚了 是不是这样可以实现更长时间的续航 xff0c 我之前再ACfly的群里看到一个人的六轴是上面放了两个电池的 xff0c 他这可能也是并联的
  • 任务的三要素是任务主体函数,任务栈和任务控制块

    任务的三要素是任务主体函数 xff0c 任务栈和任务控制块 由xTaskCreateStatic 函数来把三者联合起立 下面拍自野火的 FreeRTOS内核实现与应用开发实战指南
  • 如何用Realsense D435i运行VINS-Mono等VIO算法 获取IMU同步数据

    摘自 xff1a https blog csdn net qq 41839222 article details 86552367 如何用Realsense D435i运行VINS Mono等VIO算法 获取IMU同步数据 Manii 20
  • Opencv安装与环境配置

    转载自 xff1a https blog csdn net sm16111 article details 81238324 Opencv安装与环境配置 代码敌敌畏 2018 07 27 15 46 24 50411 收藏 94 分类专栏
  • 串口参数详解:波特率,数据位,停止位,奇偶校验位

    转载自 xff1a https blog csdn net sinat 35705952 article details 89034455 串口参数详解 xff1a 波特率 xff0c 数据位 xff0c 停止位 xff0c 奇偶校验位 W
  • cpp-httplib库简单原理,听说你还不会开源库?

    cpp httplib库的原理 听说你还不会开源库 xff1f 介绍httplib h头文件的处理流程httplib h头文件的组成httplib h头文件搭建服务端与客户端的原理Get接口listen 0 0 0 0 8989 接口 介绍
  • UART串口调试

    转载自 xff1a https www secpulse com archives 157847 html UART串口调试 脉搏文库 TideSec 2021 04 23 4 356 0x00前言 前段时间陆陆续续的对光猫 路由器 摄像头
  • visca协议及其实现的简单认识

    转载自 xff1a https latelee blog csdn net article details 35811777 visca协议及其实现的简单认识 李迟 2014 06 30 14 09 01 7064 收藏 12 分类专栏 x
  • C语言实现的一个简单的HTTP程序

    转载自 xff1a https www cnblogs com xuwenmin888 archive 2013 05 04 3059282 html C语言实现的一个简单的HTTP程序 以下是参考 lt winsock网络编程经络 gt
  • ideavim使用

    IdeaVim 常用操作 IdeaVim简介 IdeaVim是IntelliJ IDEA的一款插件 xff0c 他提高了我们写代码的速度 xff0c 对代码的跳转 xff0c 查找也很友好 安装之后它在 Tools gt Vim Emula
  • CAN总线——数据传输故障处理

    最近遇到CAN总线通讯的问题 上位机为arm板 xff0c 核心板为Cortex A9处理器 Linux内核 下位机为5块 STM32板 现象为 xff1a 如果上位机只接收数据 xff0c 一切通讯正常 当上位机下发命令 xff0c 那么
  • 升级构建工具,从Makefile到CMake

    更多博文 xff0c 请看音视频系统学习的浪漫马车之总目录 C C 43 43 编译 浅析C C 43 43 编译本质 一篇文章入门C C 43 43 自动构建利器之Makefile 升级构建工具 xff0c 从Makefile到CMake
  • RTKLIB简介

    RTKLIB是全球导航卫星系统GNSS global navigation satellite system 的标准 amp 精密定位开源程序包 xff0c RTKLIB由日本东京海洋大学 xff08 Tokyo University of
  • zzuli OJ 1038: 绝对值最大

    Description 输入3个整数 xff0c 输出绝对值最大的那个数 Input 输入包含3个int范围内的整数 xff0c 用空格隔开 Output 输出三个数中绝对值最大的数 xff0c 单独占一行 若绝对值最大的数不唯一 xff0
  • md5sum

    ERROR 1550456422 414780061 Client Lidar cipv 213 wants topic rs percept result to have datatype md5sum autodrive msgs Pe
  • libcurl实现HTTP

    关于libcurl的相关函数介绍以及参数详见官方说明 https curl haxx se libcurl c example html HTTP Request 一个http请求包含方法 路径 http版本 请求包头 请求方法 GET H
  • 深夜没事,抓个ARP包吧!

    深夜没事 xff0c 抓个ARP包吧 xff01 ipconfig查看网卡信息 选择en33这个网卡 xff0c 发送两次 xff0c 询问192 168 21 1的mac地址 xff0c 注意 xff1a ARP请求只能在同一子网内部进行
  • linux基础篇(一)——GCC和Makefile编译过程

    linux系列目录 xff1a linux基础篇 xff08 一 xff09 GCC和Makefile编译过程 linux基础篇 xff08 二 xff09 静态和动态链接 ARM裸机篇 xff08 一 xff09 i MX6ULL介绍 A
  • jni/ndk问题 :引用so库报错: java.lang.UnsatisfiedLinkError: No implementation found for

    问题 xff1a 引用so库报错 xff1a java span class token punctuation span lang span class token punctuation span UnsatisfiedLinkErro

随机推荐

  • 《python+opencv实践》一、基于颜色的物体追踪(上)

    点击打开链接 本文主要参考国外一大牛博客 xff0c 然后自己修改得来 相关知识点在这里 实现功能 xff1a 追踪红颜色瓶盖 xff0c 并画出瓶盖轮廓和运动轨迹 from collections import deque import
  • C++的sort函数实现字符串排序

    一 背景 sort函数用于C 43 43 中 xff0c 对给定区间所有元素进行排序 头文件是 include lt algorithm gt 实现原理 xff1a sort并不是简单的快速排序 xff0c 它对普通的快速排序进行了优化 x
  • C# 中的Dispose()用法

    一 对Dispose方法的理解是什么呢 xff1f 使用Dispose方法的对象 xff0c 应释放它拥有的所有资源 它还应该通过调用其父类型的Dispose方法释放其基类型拥有的所有资源 net的对象使用一般分为三种情况 1 创建对象 2
  • C++的 remove函数

    一 介绍 remove函数原型如下 xff1a template lt class ForwardIt class T gt ForwardIt remove ForwardIt first ForwardIt last const T a
  • 主板上的南桥与北桥

    一 历史 曾经 xff0c 北桥芯片和南桥芯片都是主板芯片组中最重要的组成部分 传统来说 xff0c 靠上方的叫北桥 xff0c 靠下方的叫南桥 北桥负责与CPU通信 xff0c 并且连接高速设备 xff08 内存 显卡 xff09 xff
  • CMake的add_library与target_link_libraries

    一 add library介绍 使用该命令可以在Linux下生成 xff08 静态 动态 xff09 库so或者 a文件 xff0c Windows下就是dll与lib文件 xff0c 它有两种命令格式 1 1 第一种格式 xff1a No
  • Linux下终止正在执行的shell脚本

    一 问题 Linux系统Shell中提交了一个脚本 xff0c 但是需要停止这个进程 xff0c 如何处理 xff1f 二 方案1 killall fileName 说明 xff1a killall是一个命令 xff0c 不是kill al
  • Qt对象树的销毁

    一 问题 在C 43 43 中中 xff0c 我们都知道 xff1a delete 和 new 必须配对使用 一 一对应 xff1a delete少了 xff0c 则内存泄露 为什么Qt使用new来创建一个控件 xff0c 但是却没有使用d
  • DNS域名解析之递归与非递归查询

    DNS域名解析之递归与非递归查询 递归查询迭代查询实例 递归查询 主机向本地域名服务器的查询一般是递归查询 xff1a 如果本地域名服务器不知道查询的IP地址 xff0c 那么本地域名服务器就会以DNS客户的身份向根域名服务器继续发生请求
  • spi,iic,uart,pcie区别

    一 spi SPI 是英语Serial Peripheral interface的缩写 xff0c 顾名思义就是串行外围设备接口 xff0c 是同步传输协议 xff0c 特征是 xff1a 设备有主机 xff08 master xff09
  • 决策树的介绍

    一 介绍 决策树 decision tree 是一类常见的机器学习方法 它是一种树形结构 xff0c 其中每个内部节点表示一个属性上的判断 xff0c 每个分支代表一个判断结果的输出 xff0c 最后每个叶节点代表一种分类结果 例如 xff
  • 支持向量机

    一 是否线性可分的问题 考虑图6 1中 xff0c A D共4个方框中的数据点分布 xff0c 一个问题就是 xff0c 能否画出一条直线 xff0c 将圆形点和方形点分开呢 xff1f 比如图6 2中 xff0c 方框A中的两组数据 xf
  • cmake 链接库名称扩展

    多个文件 macro span class token punctuation span configure lib by types OUTLIBS DebugSuffix span class token punctuation spa
  • 如何自定义TCP通信协议

    物联网行业智能硬件之间的通信 异构系统之间的对接 中间件的研发 以及各种即时聊天软件等 xff0c 都会涉及自定义协议 为了满足不同的业务场景的需要 xff0c 应用层之间通信需要实现各种各样的网络协议 以异构系统的对接为例 在早期 xff
  • 使用米联客FPGA开发板 固化程序失败

    问题描述 xff1a 使用米联客FPGA ZYNQ7020开发板 xff0c 在利用工程和FSBL生成BOOT bin和fsbl elf文件 烧录FLASH时 xff0c 总是失败 这个问题折腾我小半天 xff0c xff0c 无语了 后来
  • Qt串口接收数据长度不稳定问题

    最近在做一个实时接收数据的项目 xff0c 需要每2ms接收下位机发来的两帧数据 xff0c 算是串口高速接收 在使用的过程中 xff0c 发现串口接收的数据长度不稳定 xff0c 有时长有时短 代码如下 xff1a connect ser
  • git的使用入门

    1 添加个人信息 git config global user name 名字 git config global user email 邮箱 git config global user phone 手机号 查看是否提交 git conf
  • Python-OpenCV之形态学转换

    目标 学习不同的形态学操作 xff0c 例如腐蚀 xff0c 膨胀 xff0c 开运算 xff0c 闭运算等 我们要学习的函数有 xff1a cv2 erode xff0c cv2 dilate xff0c cv2 morphologyEx
  • 在windows10系统中搭建mmdetection(2020.7.19)

    参考博客 https blog csdn net david lee13 article details 102940221 本人使用的版本 python 61 3 6cuda 61 10 0cudnn 61 7 5 1pytorch 61
  • C语言字节对齐详解

    C语言字节对齐12345 不同系统下的C语言类型长度 Data TypeILP32ILP64LP64LLP64char8888short16161616int32643232long32646432long long64646464poin