C++中vector的用法详解

2023-05-16

 vector(向量): C++中的一种数据结构,确切的说是一个类.它相当于一个动态的数组,当程序员无法知道自己需要的数组的规模多大时,用其来解决问题可以达到最大节约空间的目的.

     用法:

          1.文件包含:     

           首先在程序开头处加上#include<vector>以包含所需要的类文件vector

          还有一定要加上using namespace std;

 

          2.变量声明:

               2.1 例:声明一个int向量以替代一维的数组:vector <int> a;(等于声明了一个int数组a[],大小没有指定,可以动态的向里面添加删除)。

               2.2 例:用vector代替二维数组.其实只要声明一个一维数组向量即可,而一个数组的名字其实代表的是它的首地址,所以只要声明一个地址的向量即可,即:vector <int *> a.同理想用向量代替三维数组也是一样,vector <int**>a;再往上面依此类推.

 

          3.具体的用法以及函数调用:

          3.1 如何得到向量中的元素?其用法和数组一样:

          例如:

          vector <int *> a

          int b = 5;

          a.push_back(b);//该函数下面有详解

          cout<<a[0];       //输出结果为5

1.push_back   在数组的最后添加一个数据
2.pop_back    去掉数组的最后一个数据 
3.at                得到编号位置的数据
4.begin           得到数组头的指针
5.end             得到数组的最后一个单元+1的指针
6.front        得到数组头的引用
7.back            得到数组的最后一个单元的引用
8.max_size     得到vector最大可以是多大
9.capacity       当前vector分配的大小
10.size           当前使用数据的大小
11.resize         改变当前使用数据的大小,如果它比当前使用的大,者填充默认值
12.reserve      改变当前vecotr所分配空间的大小
13.erase         删除指针指向的数据项
14.clear          清空当前的vector
15.rbegin        将vector反转后的开始指针返回(其实就是原来的end-1)
16.rend          将vector反转构的结束指针返回(其实就是原来的begin-1)
17.empty        判断vector是否为空
18.swap         与另一个vector交换数据

 

         3.2  详细的函数实现功能:其中vector<int> c.

                             c.clear()         移除容器中所有数据。

                             c.empty()         判断容器是否为空。

                             c.erase(pos)        删除pos位置的数据

                             c.erase(beg,end) 删除[beg,end)区间的数据

                             c.front()         传回第一个数据。

                             c.insert(pos,elem)  在pos位置插入一个elem拷贝

                             c.pop_back()     删除最后一个数据。

                             c.push_back(elem) 在尾部加入一个数据。

                             c.resize(num)     重新设置该容器的大小

                             c.size()         回容器中实际数据的个数。

                             c.begin()           返回指向容器第一个元素的迭代器

                             c.end()             返回指向容器最后一个元素的迭代器


               4.内存管理与效率

      1》使用reserve()函数提前设定容量大小,避免多次容量扩充操作导致效率低下。

        关于STL容器,最令人称赞的特性之一就是是只要不超过它们的最大大小,它们就可以自动增长到足以容纳你放进去的数据。(要知道这个最大值,只要调用名叫max_size的成员函数。)对于vector和string,如果需要更多空间,就以类似realloc的思想来增长大小。vector容器支持随机访问,因此为了提高效率,它内部使用动态数组的方式实现的。在通过 reserve() 来申请特定大小的时候总是按指数边界来增大其内部缓冲区。当进行insert或push_back等增加元素的操作时,如果此时动态数组的内存不够用,就要动态的重新分配当前大小的1.5~2倍的新内存区,再把原数组的内容复制过去。所以,在一般情况下,其访问速度同一般数组,只有在重新分配发生时,其性能才会下降。正如上面的代码告诉你的那样。而进行pop_back操作时,capacity并不会因为vector容器里的元素减少而有所下降,还会维持操作之前的大小。对于vector容器来说,如果有大量的数据需要进行push_back,应当使用reserve()函数提前设定其容量大小,否则会出现许多次容量扩充操作,导致效率低下。

      reserve成员函数允许你最小化必须进行的重新分配的次数,因而可以避免真分配的开销和迭代器/指针/引用失效。但在我解释reserve为什么可以那么做之前,让我简要介绍有时候令人困惑的四个相关成员函数。在标准容器中,只有vector和string提供了所有这些函数。

(1) size()告诉你容器中有多少元素。它没有告诉你容器为它容纳的元素分配了多少内存。 
(2) capacity()告诉你容器在它已经分配的内存中可以容纳多少元素。那是容器在那块内存中总共可以容纳多少元素,而不是还可以容纳多少元素。如果你想知道一个vector或string中有多少没有被占用的内存,你必须从capacity()中减去size()。如果size和capacity返回同样的值,容器中就没有剩余空间了,而下一次插入(通过insert或push_back等)会引发上面的重新分配步骤。
(3) resize(Container::size_type n)强制把容器改为容纳n个元素。调用resize之后,size将会返回n。如果n小于当前大小,容器尾部的元素会被销毁。如果n大于当前大小,新默认构造的元素会添加到容器尾部。如果n大于当前容量,在元素加入之前会发生重新分配。
(4) reserve(Container::size_type n)强制容器把它的容量改为至少n,提供的n不小于当前大小。这一般强迫进行一次重新分配,因为容量需要增加。(如果n小于当前容量,vector忽略它,这个调用什么都不做,string可能把它的容量减少为size()和n中大的数,但string的大小没有改变。在我的经验中,使用reserve来从一个string中修整多余容量一般不如使用“交换技巧”,那是条款17的主题。)

     这个简介表示了只要有元素需要插入而且容器的容量不足时就会发生重新分配(包括它们维护的原始内存分配和回收,对象的拷贝和析构和迭代器、指针和引用的失效)。所以,避免重新分配的关键是使用reserve尽快把容器的容量设置为足够大,最好在容器被构造之后立刻进行。

例如,假定你想建立一个容纳1-1000值的vector<int>。没有使用reserve,你可以像这样来做:

vector<int> v;
for (int i = 1; i <= 1000; ++i) v.push_back(i);
在大多数STL实现中,这段代码在循环过程中将会导致2到10次重新分配。(10这个数没什么奇怪的。记住vector在重新分配发生时一般把容量翻倍,而1000约等于210。)

把代码改为使用reserve,我们得到这个:

vector<int> v;
v.reserve(1000);
for (int i = 1; i <= 1000; ++i) v.push_back(i);
这在循环中不会发生重新分配。

在大小和容量之间的关系让我们可以预言什么时候插入将引起vector或string执行重新分配,而且,可以预言什么时候插入会使指向容器中的迭代器、指针和引用失效。例如,给出这段代码,

string s;
...
if (s.size() < s.capacity()) {
s.push_back('x');
}
push_back的调用不会使指向这个string中的迭代器、指针或引用失效,因为string的容量保证大于它的大小。如果不是执行push_back,代码在string的任意位置进行一个insert,我们仍然可以保证在插入期间没有发生重新分配,但是,与伴随string插入时迭代器失效的一般规则一致,所有从插入位置到string结尾的迭代器/指针/引用将失效。

回到本条款的主旨,通常有两情况使用reserve来避免不必要的重新分配。第一个可用的情况是当你确切或者大约知道有多少元素将最后出现在容器中。那样的话,就像上面的vector代码,你只是提前reserve适当数量的空间。第二种情况是保留你可能需要的最大的空间,然后,一旦你添加完全部数据,修整掉任何多余的容量。

       2》使用“交换技巧”来修整vector过剩空间/内存

      有一种方法来把它从曾经最大的容量减少到它现在需要的容量。这样减少容量的方法常常被称为“收缩到合适(shrink to fit)”。该方法只需一条语句:vector<int>(ivec).swap(ivec);
表达式vector<int>(ivec)建立一个临时vector,它是ivec的一份拷贝:vector的拷贝构造函数做了这个工作。但是,vector的拷贝构造函数只分配拷贝的元素需要的内存,所以这个临时vector没有多余的容量。然后我们让临时vector和ivec交换数据,这时我们完成了,ivec只有临时变量的修整过的容量,而这个临时变量则持有了曾经在ivec中的没用到的过剩容量。在这里(这个语句结尾),临时vector被销毁,因此释放了以前ivec使用的内存,收缩到合适。

     3》用swap方法强行释放STL Vector所占内存

template < class T> void ClearVector( vector<T>& v )

    vector<T>vtTemp;
    vtTemp.swap( v );

如 
    vector<int> v ;
    nums.push_back(1);
    nums.push_back(3);
    nums.push_back(2);
    nums.push_back(4);
    vector<int>().swap(v);

/* 或者v.swap(vector<int>()); */

/*或者{ std::vector<int> tmp = v;   v.swap(tmp);   }; //加大括号{ }是让tmp退出{ }时自动析构*/

 

5.Vector 内存管理成员函数的行为测试

       C++ STL的vector使用非常广泛,但是对其内存的管理模型一直有多种猜测,下面用实例代码测试来了解其内存管理方式,测试代码如下:

#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<int> iVec;
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //1个元素, 容器容量为1

iVec.push_back(1);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //2个元素, 容器容量为2

iVec.push_back(2);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //3个元素, 容器容量为4

iVec.push_back(3);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //4个元素, 容器容量为4

iVec.push_back(4);
iVec.push_back(5);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //5个元素, 容器容量为8

iVec.push_back(6);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //6个元素, 容器容量为8

iVec.push_back(7);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //7个元素, 容器容量为8

iVec.push_back(8);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //8个元素, 容器容量为8

iVec.push_back(9);
cout << "容器 大小为: " << iVec.size() << endl;
cout << "容器 容量为: " << iVec.capacity() << endl; //9个元素, 容器容量为16
/* vs2005/8 容量增长不是翻倍的,如 
    9个元素   容量9 
    10个元素 容量13 */

/* 测试effective stl中的特殊的交换 swap() */
cout << "当前vector 的大小为: " << iVec.size() << endl;
cout << "当前vector 的容量为: " << iVec.capacity() << endl;
vector<int>(iVec).swap(iVec);

cout << "临时的vector<int>对象 的大小为: " << (vector<int>(iVec)).size() << endl;
cout << "临时的vector<int>对象 的容量为: " << (vector<int>(iVec)).capacity() << endl;
cout << "交换后,当前vector 的大小为: " << iVec.size() << endl;
cout << "交换后,当前vector 的容量为: " << iVec.capacity() << endl;

return 0;
}

6.vector的其他成员函数

        c.assign(beg,end):将[beg; end)区间中的数据赋值给c。
        c.assign(n,elem):将n个elem的拷贝赋值给c。 
        c.at(idx):传回索引idx所指的数据,如果idx越界,抛出out_of_range。 
        c.back():传回最后一个数据,不检查这个数据是否存在。
        c.front():传回地一个数据。 
        get_allocator:使用构造函数返回一个拷贝。 
        c.rbegin():传回一个逆向队列的第一个数据。 
        c.rend():传回一个逆向队列的最后一个数据的下一个位置。 
        c.~ vector <Elem>():销毁所有数据,释放内存。    

7.备注:在用vector的过程中的一些问题,特此列出讨论:

               1)

                    vector <int > a;

                    int  b = 5;

                    a.push_back(b);

                    此时若对b另外赋值时不会影响a[0]的值

                2)

                    vector <int*> a;
                     int *b;
                     b= new int[4];
                     b[0]=0;
                     b[1]=1;
                     b[2]=2;
                     a.push_back(b);
                     delete b;          //释放b的地址空间
                     for(int i=0 ; i <3 ; i++)
                     {
                           cout<<a[0][i]<<endl;
                     }

                     此时输出的值并不是一开始b数组初始化的值,而是一些无法预计的值.

                    分析:根据1) 2)的结果,可以想到,在1)中,  往a向量中压入的是b的值,即a[0]=b,此时a[0]和b是存储在两个不同的地址中的.因此改变b的值不会影响a[0];而在2)中,因为是把一个地址(指针)压入向量a,即a[0]=b,因此释放了b的地址也就释放了a[0]的地址,因此a[0]数组中存放的数值也就不得而知了.   

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C++中vector的用法详解 的相关文章

  • 打开多个相关联的网页 js脚本打开网页方法

    当日常工作中会有很多网页需要打开来使用 xff0c 如果每天重复的打开网页 xff0c 或者网页太多会很麻烦 那有没有其他的解决方法呢 xff1f 当然有 xff0c 下面用js的方法来解决这个问题 lt script gt var url
  • 栈的基本内容

    一 栈的定义 栈是限定仅在表尾进行插入和删除操作的线性表 通常把允许插入和删除的一端称为栈顶 xff0c 另一端称为栈底 xff0c 不含任何数据元素的栈称为空栈 栈又称为后进先出的线性表 xff0c 简称为LIFO结构 xff08 Las
  • 关于ERROR: error loading sources list: The read operation timed out 的解决方法

    在ubuntu 20 04系统下ROS平台安装时 xff0c 初始化rosdep报错 xff0c 在进行 rosdep update 出现超时报错 reading in sources list data from etc ros rosd
  • Http 解析url 各种参数类型工具类(文件,json,xml)

    1 http post请求传参数 43 文件 import java nio charset Charset import java util import org apache http HttpEntity import org apa
  • 一字节内的位序(bit)大端小端分析

    相信字节序 大端 小端的概念相关资料很多 xff0c 大家都比较清楚了 这里说明下一字节内部位序 xff08 bit xff09 的概念 在计算机中底层一个存储单元是字节 xff0c 因此你的指令寻址是不可能找到一字节内部的bit的 xff
  • RPLIDAR十分钟极速入门教程

    本教程由 臭皮匠机器人 原创 转载请注明出处 收到一个RPLidar后 xff0c 干的第一件事应该是先让雷达跑起来 xff0c 边做边学是最高效的 本教程 xff0c 将教你只用简单的三步 xff0c 花10分钟即可上手 本教程RPLid
  • RPLIDAR最强参数详解

    本教程由 臭皮匠机器人 原创 转载请注明出处 有的同学跟我们说 xff0c RPLIDAR的参数看不懂 xff0c 感觉理解起来困难 其实也不难懂的 xff0c 本篇将带你了解这些重要的指标 xff0c 给你讲清说透 由于RPLIDAR还在
  • 如何避免头文件被重复包含?

    在实际的工程中我们很有可能重复包含某一个头文件 xff0c 比如下面这种情况 xff1a 开发人员B和开发人员C在自己的头文件中都包含了开发人员A的头文件 xff0c 而开发人员D在自己的编译单元中包含了B和C的头文件 xff0c 此时D就
  • VScode配置C/C++编程总结(GCC+Clang+CMake)

    VScode配置C C 43 43 编程总结 xff08 GCC 43 Clang 43 CMake xff09 自己存下档纪念一下2019 12 18 Visual Studio Code VScode全称Visual Studio Co
  • 关于锂电池的二三事

    为了解释的更清楚 xff0c 我录制了一个视频 xff0c 详情可以参看 xff1a 我的这个B站视频 这是目录0 0 背景参数指标一些使用方法 背景 锂电池是我们日常生活中和制造东西时经常见到和使用的一种东西 xff0c 但是有很多细节可
  • 单片机堆栈知识总结

    堆栈 在片内RAM中 xff0c 常常要指定一个专门的区域来存放某些特别的数据 它遵循顺序存取和后进先出 LIFO FILO 的原则 xff0c 这个RAM区叫堆栈 其实堆栈就是单片机中的一些存储单元 xff0c 这些存储单元被指定保存一些
  • STM32串口发送中断试验、在初始化时不能使能串口发送中断

    问题描述 在测试STM32串口发送完成中断的应用中 xff0c 遇到了一个很奇怪的问题 xff0c 在初始化完成之后直接就进入了串口中断函数的发送完成服务中断函数部分 本测试代码是在原来的基础上更改的 xff0c 原来只使能了接受中断 xf
  • java,http post请求,多个不同方式请求示例

    以下是 Java 中进行 HTTP POST 请求的示例代码 xff0c 包括使用 HttpURLConnection 和 HttpClient 两种方式 xff0c 供您参考 使用 HttpURLConnection 发送 POST 请求
  • 【STM32】HAL库开发教程(一)—基本使用

    前言 提示 xff1a 本系列本章针对STM32F207 xff0c 基于Cubemx和Keil进行程序开发 本系列文章并不是一步一操作的傻瓜式教程 xff0c 而更希望是一个向导 xff0c 引导读者去思考去开发 做为一个开发者应该是在思
  • 【STM32】HAL库开发教程(五)—RTC使用

    前言 不必害怕未知 xff0c 无需恐惧犯错 xff0c 做一个Creator xff01 一 RTC简介 STM32F2的实时时钟 RTC 是一个独立的BCD Binary Coded Decimal 定时器 计时器 xff0c 提供了一
  • 【STM32】HAL库开发教程(七)—SPI使用

    前言 不必害怕未知 xff0c 无需恐惧犯错 xff0c 做一个Creator xff01 本文主要介绍STM32 HAL库开发中SPI通信的使用 一 开发步骤 1 STM32CubeMX配置 在左侧引脚配置处勾选SPI进行配置在SPI模式
  • 【通信技术】信噪比及单位

    信噪比 xff1a 一个电子设备或者电子系统中信号与噪声的比例 计量单位 dB xff0c 其计算方法是10lg Ps Pn xff0c 其中Ps和Pn分别代表信号和噪声的有效功率 功率单位 xff1a dBm是一个考征功率绝对值的值 xf
  • 【C语言】字符串打印(定长)

    目的 xff1a 打印长度可控的字符串 char ucBuf uint8 t ucLen char ucString 256 memcpy ucString ucBuf ucLen ucString ucLen 61 39 0 39 pri
  • 【卫星】卫星通信基本概念与知识

    不必害怕未知 xff0c 无需恐惧犯错 xff0c 做一个Creator xff01 卫星通信基本概念与知识 上行链路 xff1a 从地球站发射信号到通信卫星所经过的通信路径成为上行链路 下行链路 xff1a 通信卫星将信号再转发到其他地球
  • 计算机基础笔记(三)—操作系统

    前言 不必害怕未知 xff0c 无需恐惧犯错 xff0c 做一个Creator xff01 目录 前言一 概述二 操作系统分类三 组成部分用户界面内存管理器进程管理进程同步设备管理文件管理 四 主流操作系统UNIXLinuxWindows

随机推荐

  • 计算机基础笔记(四)—数据结构

    前言 不必害怕未知 xff0c 无需恐惧犯错 xff0c 做一个Creator xff01 目录 前言数组链表栈 xff08 LIFO xff09 队列 xff08 FIFO xff09 广义线性表树图 定义 有特殊关系的数据的集合 xff
  • 计算机基础笔记(五)—数据库

    前言 不必害怕未知 xff0c 无需恐惧犯错 xff0c 做一个Creator xff01 目录 前言文件结构顺序文件索引文件散列文件目录 数据库数据库体系结构数据库模型数据库的设计其他数据库 文件结构 文件是数据记录的集合 xff0c 每
  • 陀螺仪数据处理(BMI088)

    1 BMI088惯性传感器介绍 1 1传感器原理图 传感器采用3 3V供电 xff0c 使用SPI IIC通讯模式 xff08 本文采用SPI通讯协议 xff09 1 2传感器功能介绍 注 xff1a 这里提到的数据读取频率 2000Hz是
  • FreeRTOS 多任务系统——任务切换、任务管理方式心得

    目前在进行对使用FreeRTOS的项目的代码升级 xff0c 之前采用的主逻辑任务切换模式 xff1a 由一个任务来进行逻辑上为串行的不同功能切换 xff0c 其他任务分别负责通信实时传输 传感器检测和电机控制 xff0c 系统中断中采用变
  • 13.C工程与寄存器封装

    文章目录 启动代码分析使用C语言点灯封装代码寄存器操作的标准化 启动代码分析 text global start start Vector table xff1a 占用异常向量表空间 xff0c 让它不再能被其它代码占用 b reset b
  • 授权(authorization)的设计思路

    本文对授权 authorization 的设计思路 客户端必须得到用户的授权 authorization grant xff0c 才能获得令牌 token 授权码模式 xff08 authorization code xff09 grant
  • Ubuntu18.04下安装ROS步骤及遇到的错误集锦(尤其是rosdep update报错)

    1 首先设置软件源 xff08 任选其一使用 xff09 1 xff09 国外的软件源 xff08 速度慢 xff09 sudo sh span class token operator span c span class token st
  • C语言中的 __FILE__ __LINE__ #line

    C语言中的 FILE 用以指示本行语句所在源文件的文件名 例 xff1a a c include lt stdio h gt int main printf 34 s n 34 FILE 在gcc编译生成a out xff0c 执行后输出结
  • ROS入门(一)安装并配置ROS环境

    1 安装ROS 在学习这些教程之前先按照 lt lt 在ubuntu中安装ROS kinetic gt gt 这篇博客 完成安装 注意 如果你是使用类似apt这样的软件管理器来安装ROS的 xff0c 那么安装后这些软件包将不具备写入权限
  • C语言带参#define个人理解

    之前接触带参 define比较少 xff0c 这几天 查阅stm32官方固件库 xff0c 看到以下代码有点懵 xff1a define IS GPIO ALL PERIPH PERIPH PERIPH 61 61 GPIOA PERIPH
  • Ubuntu学习笔记2-ROS安装及配置

    Ubuntu学习笔记1 ROS安装及配置 前期准备 内容参考大佬赵虚左的视频及文献 xff0c 此博客仅作记录防止忘记用 在Ubuntu虚拟机中安装ROS并使用Vscode开发ROS程序 xff0c 环境如下 xff1a Ubuntu版本
  • DDR模式寄存器

    mode register 模式寄存器 MR0 MR3 用于定义DDR3sdram的各种可编程操作模式 在初始化过程中 xff0c 模式寄存器通过模式寄存器设置 MRS 命令进行编程 xff0c 并保留存储的信息 MR0 8 除外 xff0
  • 什么是迭代器

    迭代器是一种设计模式 xff0c 它是一个对象 xff0c 他可以遍历并且选择序列中的一个对象 xff0c 是开发人员可以忽视这个序列中的底层结构 迭代器被称为轻量级的对象 xff0c 因为它创建的代价是非常小的Java中的Iterator
  • ARM_C高级学习笔记(六)大端模式和小端模式

    文章目录 xff08 一 xff09 什么是大小端模式 xff08 二 xff09 怎么测试大小端模式1 用union来测试机器的大小端模式2 用指针来测试机器的大小端模式 xff08 四 xff09 看似可行实则不行的测试大小端方式 xf
  • VS2019利用Curl库实现HTTP网络通信(C++)

    C 43 43 实现HTTP网络通信 xff0c 一般采用两种方式 xff0c 熟悉TCP协议的大哥可能不需要查这方面的知识 xff1b 还有一种方式就是使用第三方库 xff0c Qt环境下可以用QNetworkRequest实现很方便 x
  • 在windows配置 cygwin 和 gcc 

    1 install cygwin https www cygwin com 2 copy the setup exe under cygwin64 folder and run C cygwin64 gt setup x86 64 exe
  • VMware虚拟机Ubuntu22.04忽然不能上网

    问题描述 原本正常使用的虚拟机Ubuntu22 04忽然之间不能正常上网了 xff0c 右上角的网络连接标志也不见了 尝试删除网络适配器 xff0c 并重新添加网络适配器 不能解决 尝试windows下配置网络 原来正常上网 xff0c w
  • GIT 基于TAG拉取分支

    git 基于tag拉branch 获得最新 span class token function git span origin fetch 从tag创建新的分支 span class token function git span bran
  • 栈的作用

    栈 栈 xff08 stack xff09 又名堆栈 xff0c 它是一种运算受限的线性表 其限制是仅允许在表的一端进行插入和删除运算 这一端被称为栈顶 xff0c 相对地 xff0c 把另一端称为栈底 向一个栈插入新元素又称作进栈 入栈或
  • C++中vector的用法详解

    vector 向量 C 43 43 中的一种数据结构 确切的说是一个类 它相当于一个动态的数组 当程序员无法知道自己需要的数组的规模多大时 用其来解决问题可以达到最大节约空间的目的 用法 1 文件包含 首先在程序开头处加上 include