stm32---OLED(SSD1306)

2023-05-16

OLED模块优缺点
优点:尺寸小,分辨率高,低压3.3V就可工作,支持多种接口方式,该模块提供了总共4种接口包括:6800、8080两种并行接口方式、 4线的穿行SPI接口方式,、IIC接口方式(只需要2根线就可以控制OLED了!)。
缺点:尺寸还难以大型化,价格昂贵

OLED模块工作模式选择(4种模式通过模块的BS1/BS2设置)(默认8080)
BS1/BS2的设置与模块接口模式的关系如表所示:
在这里插入图片描述
OLED 8080并行接口信号线说明
CS:OLED片选信号。
WR:向OLED写入数据。
RD:从OLED读取数据。
D[7:0]:8位双向数据线。
RST(RES):硬复位OLED。
DC:命令/数据标志(0,读写命令;1,读写数据)。
在这里插入图片描述
OLED8080并口读写过程

  1. 根据写入/读取的数据的类型,设置DC为高(数据)/低(命令)
  2. 然后拉低片选,选中SSD1306
  3. 接着我们根据是读数据,还是要写数据置RD/WR为低
  4. 然后:
    (1).读数据:在RD的上升沿, 使数据锁存到数据线(D[7:0])上;
    (2).写数据:在WR的上升沿,使数据写入到SSD1306(OLED控制器)里面;
    在这里插入图片描述
    并口写时序图
    在这里插入图片描述
    并口读时序图

OLED模块显存
SSD1306的显存总共为12864bit大小,SSD1306将这些显存分为了8页。每页包含了128个字节,总共8页,这样刚好是12864的点阵大小。
在这里插入图片描述
程序显示原理
在STM32的内部建立一个 缓存(共128*8个字节),在每次修改的时候,只是修改STM32上的缓存(实际上就是SRAM),在修改完了之后,一次性把STM32上的缓存数据写入到OLED的GRAM。当然这个方法也有坏处,就是对于那些SRAM很小的单片机(比如51系列)就比较麻烦了。

SSD1306的命令
在这里插入图片描述

====================================================================
OLED写一个字节

//向SSD1306写入一个字节。
//dat:要写入的数据/命令
//cmd:数据/命令标志 0,表示命令;1,表示数据;
void OLED_WR_Byte(u8 dat,u8 cmd)
{
   DATAOUT(dat);   //  把数据传到数据口
  if(cmd)
     OLED_RS_Set();//  D/C置高
  else 
     OLED_RS_Clr();//  D/C置低	   
  OLED_CS_Clr();   //  片选
  OLED_WR_Clr();   //  拉低WR,然后拉高产生一个上升沿	 
  OLED_WR_Set();
  OLED_CS_Set();   //  片选拉高,为下次做准备  
  OLED_RS_Set();	 
} 	 

OLED画点函数

void OLED_DrawPoint(u8 x,u8 y,u8 t)
{
   u8 pos,bx,temp=0;
   if(x>127||y>63)return;//超出范围了.
   pos=7-y/8;
   bx=y%8;
   temp=1<<(7-bx);
   if(t)OLED_GRAM[x][pos]|=temp;
   else OLED_GRAM[x][pos]&=~temp;	    
}

OLED显示

u8 OLED_GRAM[128][8];	

void OLED_Refresh_Gram(void)
{
   u8 i,n;		    
  for(i=0;i<8;i++)  
  {  
    OLED_WR_Byte (0xb0+i,OLED_CMD);    //设置页地址(0~7)
    OLED_WR_Byte (0x00,OLED_CMD);      //设置显示位置—列低地址
    OLED_WR_Byte (0x10,OLED_CMD);      //设置显示位置—列高地址
    //即设置从指定页每一列的最开头开始写起   
    
   for(n=0;n<128;n++)
     OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); //更新OLED显存
  }   
}

OLED字符显示函数

//在指定位置显示一个字符,包括部分字符
//x:0~127  y:0~63
//mode:0,反白显示;1,            size:选择字体 12/16/24
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode)
{      			    
   u8 temp,t,t1; u8 y0=y;
   u8 csize=(size/8+((size%8)?1:0))*(size/2);	//得到字体一个字符对应点阵集所占的字节数
   chr=chr-' ';//得到偏移后的值		 
    for(t=0;t<csize;t++)
    {   
     if(size==12)temp=asc2_1206[chr][t]; 	 	//调用1206字体
    else if(size==16)temp=asc2_1608[chr][t];	//调用1608字体
    else if(size==24)temp=asc2_2412[chr][t];	//调用2412字体
    else return;	//没有的字库
     for(t1=0;t1<8;t1++)
    {
	if(temp&0x80)OLED_DrawPoint(x,y,mode);
	else OLED_DrawPoint(x,y,!mode);
	temp<<=1;
	y++;
	if((y-y0)==size)
	{
	  y=y0;
	  x++;  break;
	}
  }  	 
    }          
}
//字符码表
const unsigned char oled_asc2_1206[95][12]={
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*" ",0*/
{0x18,0x00,0x24,0xC0,0x1B,0x00,0x0D,0x80,0x32,0x40,0x01,0x80},/*"%",5*/
{0x03,0x80,0x1C,0x40,0x27,0x40,0x1C,0x80,0x07,0x40,0x00,0x40},/*"&",6*/{0x00,0x00,0x03,0x80,0x04,0x40,0x04,0x40,0x06,0x40,0x00,0x00},/*"c",67*/
{0x00,0x00,0x03,0x80,0x04,0x40,0x24,0x40,0x3F,0xC0,0x00,0x40},/*"d",68*/{0x00,0x00,0x40,0x20,0x7B,0xE0,0x04,0x00,0x00,0x00,0x00,0x00},/*"}",93*/
{0x40,0x00,0x80,0x00,0x40,0x00,0x20,0x00,0x20,0x00,0x40,0x00},/*"~",94*/
};
const unsigned char oled_asc2_1608[95][16]={	  
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*" ",0*/ {0x0F,0x00,0x10,0x84,0x0F,0x38,0x00,0xC0,0x07,0x78,0x18,0x84,0x00,0x78,0x00,0x00},/*"%",5*/
{0x00,0x78,0x0F,0x84,0x10,0xC4,0x11,0x24,0x0E,0x98,0x00,0xE4,0x00,0x84,0x00,0x08},/*"&",6*/{0x00,0x00,0x1C,0x00,0x10,0x00,0x10,0xFC,0x13,0x00,0x1C,0x00,0x10,0x00,0x00,0x00},/*"7",23*/
{0x00,0x00,0x0E,0x38,0x11,0x44,0x10,0x84,0x10,0x84,0x11,0x44,0x0E,0x38,0x00,0x00},/*"8",24*/
{0x00,0x00,0x07,0x00,0x08,0x8C,0x10,0x44,0x10,0x44,0x08,0x88,0x07,0xF0,0x00,0x00},/*"9",25*/
}
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

stm32---OLED(SSD1306) 的相关文章

  • 处理器指令周期执行时间

    我的猜测是 no operation 内在 ARM 指令应花费 1 168 MHz 来执行 前提是每个NOP在一个时钟周期内执行 我想通过文档验证这一点 有关处理器指令周期执行时间的信息是否有标准位置 我试图确定 STM32f407IGh6
  • 在 MCU 内部 FLASH 中从一个固件跳转到另一个固件

    我目前正在开发针对 STM32F030C8 的引导加载程序固件应用程序 我在分散文件中指定引导加载程序应用程序将占用主内存位置 0x08000000 到 0x08002FFF 扇区 0 到扇区 2 我还编写了一个主固件应用程序 存储在0x0
  • 如何让printf在STM32F103上工作?

    我是 STM32F103 世界的新手 我有一个STM32F103的演示代码 我正在使用arm none eabi来编译它 我尝试了在谷歌上可以找到的内容 但到目前为止没有任何效果 我已经花了三天时间来解决这个问题 任何人都可以给我一个运行良
  • 当数据大小较小时,内存到内存 DMA 传输是否需要权衡?

    我正在学习 STM32 F4 微控制器 我正在尝试找出使用 DMA 的限制 根据我的理解和研究 我知道如果数据量较小 即设备使用DMA生成或消耗少量数据 则开销会增加 因为DMA传输需要DMA控制器执行操作 从而不必要地增加系统成本 我做了
  • 138-基于stm32单片机汽车多功能仪表盘显示系统Proteus仿真+源程序

    资料编号 138 一 功能介绍 1 采用stm32单片机 LCD1602显示屏 独立按键 DHT11传感器 ds1302时钟 LED灯 蜂鸣器 电位器 制作一个基于stm32单片机汽车多功能仪表盘显示系统Proteus仿真 2 通过DHT1
  • 137-基于stm32单片机智能保温杯控制装置Proteus仿真+源程序

    资料编号 137 一 功能介绍 1 采用stm32单片机 LCD1602显示屏 独立按键 DS18B20传感器 电机 制作一个基于stm32单片机智能保温杯控制装置Proteus仿真 2 通过DS18b20传感器检测当前保温杯水的温度 并且
  • STM32F103

    提示 来源正点原子 参考STM32F103 战舰开发指南V1 3PDF资料 文章目录 前言 一 pandas是什么 二 使用步骤 1 引入库 2 读入数据 总结 前言 提示 这里可以添加本文要记录的大概内容 开发环境硬件普中科技 接线图在g
  • SHT10温湿度传感器——STM32驱动

    实验效果 硬件外观 接线 3 3V供电 IIC通讯 代码获取 查看下方 END
  • 解决KEIL编译慢问题

    两种方案 使用v6版本的ARM Compiler 如果v6版本编译不过 必须使用v5版本的 则可以勾选掉Browse Information选项 提升很明显 1分多钟能优化到几秒 看代码量 但是这个有个弊端 在KEIL中会影响函数跳转 建议
  • VS Code 有没有办法导入 Makefile 项目?

    正如标题所说 我可以从现有的 Makefile 自动填充 c cpp properties json 吗 Edit 对于其他尝试导入 makefile 的人 我找到了一组脚本 它们完全可以实现我想要实现的目标 即通过 VS Code 管理
  • 跟着野火学FreeRTOS:第一段(任务定义,切换以及临界段)

    在裸机系统中 系统的主体就是 C P U CPU CP U 按照预先设定的程序逻辑在 m a i n
  • STM32 暂停调试器时冻结外设

    当到达断点或用户暂停代码执行时 调试器可以停止 Cortex 中代码的执行 但是 当皮质停止在暂停状态下执行代码时 调试器是否会冻结其他外设 例如 DMA UART 和定时器 您只能保留时间 r 取决于外围设备 我在进入主函数时调用以下代码
  • Arm:objcopy 如何知道 elf 中的哪些部分要包含在二进制或 ihex 中?

    我正在开发一个项目 其中涉及解析arm elf 文件并从中提取部分 显然 elf 文件中有很多部分没有加载到闪存中 但我想知道 objcopy 到底如何知道要在二进制文件中包含哪些部分以直接闪存到闪存中 以arm elf文件的以下reade
  • 嵌入式开发--STM32G4系列片上FLASH的读写

    这个玩意吧 说起来很简单 就是几行代码的事 但楞是折腾了我大半天时间才搞定 原因后面说 先看代码吧 读操作 读操作很简单 以32位方式读取的时候是这样的 data IO uint32 t 0x0800F000 需要注意的是 当以32位方式读
  • Cortex-M3与M4权威指南

    处理器类型 所有的ARM Cortex M 处理器是32位的精简指令集处理器 它们有 32位寄存器 32位内部数据路径 32位总线接口 除了32位数据 Cortex M处理器也可以有效地处理器8位和16位数据以及支持许多涉及64位数据的操作
  • 通过JTAG恢复STM32 MCU磨掉的标记

    我有一块可能带有 STM32 MCU 的板 我想为该板制作定制固件 因为库存板有很多问题 不幸的是 电路板制造商很友善地磨掉了所有标记 有没有办法通过 jtag 获取设备 系列 ID 并将其交叉引用到型号 我能找到的一切都是关于获取芯片的唯
  • 嵌入式 C++11 代码 — 我需要 volatile 吗?

    采用 Cortex M3 MCU STM32F1 的嵌入式设备 它具有嵌入式闪存 64K MCU固件可以在运行时重新编程闪存扇区 这是由闪存控制器 FMC 寄存器完成的 所以它不像a b那么简单 FMC 获取缓冲区指针并将数据刻录到某个闪存
  • STM32 上的位置无关代码 - 指针

    我已成功在 STM32 上构建并运行位置无关的代码 向量表和 GOT 已修补 一切正常 但我对这样的代码有问题 double myAdd double x return x 0 1 double ptrmyAdd double myAdd
  • HAL_Delay() 陷入无限循环

    我被 HAL Delay 函数困住了 当我调用此函数 HAL Delay 时 控制陷入无限循环 在寻找问题的过程中 我发现了这个 http www openstm32 org forumthread2145 threadId2146 htt
  • 使用 STM32F0 ADC 单独读取不同的输入

    STM32F072CBU 微控制器 我有多个 ADC 输入 并且希望单独读取它们 STMcubeMX 生成样板代码 假设我希望按顺序读取所有输入 但我无法弄清楚如何纠正这个问题 这篇博文 http blog koepi info 2015

随机推荐

  • CAN协议总线仲裁原理:数据发送权争夺

    CAN总线仲裁原理是指在多个CAN节点同时发送数据时 xff0c 如何避免冲突 并选择一个节点作为发送者 CAN总线的仲裁原理基于一个分布式仲裁机制 xff0c 它可以快速而可靠地确定哪个节点可以获得总线控制权 xff0c 从而发送数据 C
  • Spring整合JMS(一)——基于ActiveMQ实现

    1 1 JMS简介 JMS的全称是Java Message Service xff0c 即Java消息服务 它主要用于在生产者和消费者之间进行消息传递 xff0c 生产者负责产生消息 xff0c 而消费者负责接收消息 把它应用到实际的业务需
  • getopt函数详解

    getopt 函数是C语言中一个常用的命令行参数解析函数 xff0c 它可以方便地解析命令行输入的参数 xff0c 以便程序对不同参数进行不同的处理 本文将详细讲解getopt 函数的使用方法和注意事项 xff0c 分点阐述如下 xff1a
  • UCOSIII

    UCOSIII简介 xff1a UCOSIII是MicroC OS III的改编版本 xff0c 主要是用于实时系统中的任务调度 xff0c 它是嵌入式系统中应用最广泛的操作系统之一 用函数说明 xff1a 1 OSInit 用于初始化UC
  • UCOSIII-任务创建-库函数

    创建任务 xff1a OSTaskCreate OS TCB amp StartTaskTCB 任务控制块 xff08 amp 传地址 xff09 CPU CHAR 34 start task 34 任务名字 xff08 可以随便写 xff
  • ucosiii-常用api

    uC OS III 提供了许多 API 函数 xff0c 可以根据需要选择使用 以下是一些常用的 uC OS III API 函数 xff1a 任务管理 API OSTaskCreate xff1a 创建一个新任务 xff1b OSTask
  • windows 清除 .git 文件夹

    有时我们需要将 git 管理项目中的 git文件夹删除 xff0c 但是如果项目太多 xff0c 一个一个手动删除太麻烦 xff0c 这时候可以用 bat 批处理文件删除 xff0c 具体操作如下 桌面 右击 新建文本文档 xff0c 此时
  • Your anti-virus program might be impacting your build performance.解决方案

    Your anti virus program might be impacting your build performance 解决方案 在使用 AndroidStudio 时 xff0c 经常会弹出框提示 xff1a Your ant
  • init.rc 启动 shell 脚本 开机执行脚本 init.rc执行shell脚本

    Android 重启时执行 shell 脚本 init rc 执行 shell 脚本 最近有个需求 xff0c 需要生成系统的默认配置 xff0c 使得在系统开机后 xff0c 直接读取已经配置好的文件 当时想的解决方案是 xff0c 在编
  • android 10 自定义系统服务接口给app调用

    Android 安卓自定义系统服务 最近有个需求 xff0c 要增加系统服务 xff0c 生成第三方 jar 包提供给第三方应用调用 xff0c 而且 jar 包必须用特定的包名 xff0c 最后生成的 jar 包不能包含 framewor
  • Android java.lang.NoSuchMethodError: No virtual method ;or its super classes (declaration of

    修改 AOSP 源码后调用错误 java lang NoSuchMethodError No virtual method in class or its super classes declaration of appears in sy
  • 谷歌使用技巧 20 招

    第一招 xff1a 使用搜索栏下方的 Tab 栏 xff0c 可以快速搜索 视频 图片 新闻第二招 xff1a 使用引号 xff0c 默认搜索会去搜索包含输入关键字的结果 xff0c 用 34 holy shit 34 会去进行整句搜索第三
  • 索引算法原理解析(B-tree以及磁盘存储原理)

    刚开始学习的时候 xff0c 百度去查 xff0c 但发现好多说得太复杂不好理解 xff0c 结合各个文章总结一下 xff08 建议大概看文字 xff0c 不理解不要紧 xff0c 然后再看图的执行步骤然后在结合文字 xff0c 这样一切就
  • C语言-----结构体内存对齐

    结构体内存对齐规则 xff1a 第一个成员在结构体变量偏移量为0 的地址处 其他成员变量要对齐到某个数字 xff08 对齐数 xff09 的整数倍的地址处 对齐数 61 编译器默认的一个对齐数与该成员大小中的较小值 vs中默认值是8 Lin
  • dpi计算 density 取值范围

    PPI DPI计算公式 Density 61 sqrt span class token punctuation span span class token punctuation span span class token car wp
  • Repo 流程

    First repo init creates the repo directory clones the git repository https android googlesource com tools repo to repo r
  • *** buffer overflow detected ***: terminatedAborted (core dumped)解决

    在执行一个程序的时候出现了下面的这个错误 xff0c 明明在Ubuntu下面已经编译好了 xff0c 执行的时候除了问题 xff0c 于是换了台电脑尝试还是一样 buffer overflow detected terminated Abo
  • 虚拟机Ubuntu远程启动Jetson nano RVIZ图形界面失败

    INFO 1644470251 178517 Rosapi started map manager 6 process has finished cleanly log file home jetson ros log fb3115c6 8
  • YOLOv5训练自己的数据集实现视频的识别

    写在前面 我本来是使用这个模型进行手写签名的定位 xff0c 但是因为比赛的主办方原因 xff0c 数据不允许公开 xff0c 所以我使用动物世界的一段开头视屏来制作我的数据集 这整个模型跑通的过程中 xff0c 我参考了很多不错的博客 x
  • stm32---OLED(SSD1306)

    OLED模块优缺点 优点 xff1a 尺寸小 xff0c 分辨率高 xff0c 低压3 3V就可工作 xff0c 支持多种接口方式 xff0c 该模块提供了总共4种接口包括 xff1a 6800 8080两种并行接口方式 4线的穿行SPI接