SiC MOSFET驱动电压的分析及探讨

2023-05-16

SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨

随着制备技术的进步,在需求的不断拉动下,碳化硅(SiC)器件与模块的成本逐年降低。相关产品的研发与应用也得到了极大的加速。尤其在新能源汽车,可再生能源及储能等应用领域的发展,更是不容小觑。

【导读】随着制备技术的进步,在需求的不断拉动下,碳化硅(SiC)器件与模块的成本逐年降低。相关产品的研发与应用也得到了极大的加速。尤其在新能源汽车,可再生能源及储能等应用领域的发展,更是不容小觑。

富昌电子(Future Electronics)一直致力于以专业的技术服务,为客户打造个性化的解决方案,并缩短产品设计周期。在第三代半导体的实际应用领域,富昌电子结合自身的技术积累和项目经验,落笔于SiC相关设计的系列文章。希望以此给到大家一定的设计参考,并期待与您进一步的交流。

作为系列文章的第一部分,本文将先就SiC MOSFET的驱动电压做一定的分析及探讨。

常见的Vgs与Vgs(th),以及对SiC MOSFET应用的影响

驱动电压Vgs和栅极电压阈值Vgs(th)关系到SiC MOSFET在应用过程中的可靠性,功率损耗(导通电阻),以及驱动电路的兼容性等。这是SiC MOSFET非常关键的参数,在设计过程中需要重点考虑。在不同的设计中,设置不同的驱动电压会有更高的性价比。下图1 列出几个常见厂家部分SiC MOSFET的Vgs与Vgs(th)值作对比。

SiC MOSFET驱动电压设置探讨

找电子元器件现货上唯样商城

1.驱动电压高电平Vgs_on是选择+12V、+15V、+18V还是+20V?

如图1所示,SiC MOSFET 驱动电压正向最大值在22V~25V左右,推荐的工作电压主要有+20V,+18V两种规格,具体应用需要参考不同SiC MOSFET型号的DATASHEET。由下图2所示,Vgs超过15V时,无论是导通内阻还是导通电流逐渐趋于平缓 (各家SiC MOSFET的DATASHEET给出的参考标准不同,有的是Rds(on)与Vgs的曲线,有的是Id与Vgs的曲线)。当然驱动电压Vgs越高,对应的Rds(on)会越小,损耗也就越小。

富昌设计小建议:Vgs设定Vgs时不能超过DATASHEET给定的最大值,否则可能会造成SiC MOSFET永久损坏。

(1)对于推荐使用+18V或+20V 高电平驱动电压的SiC MOSFET

由图1所示,因为新一代SiC MOS工艺的提升,部分SiC MOSFET推荐高电平驱动电压为+18V。由下图2所示,工艺的提升,使得Vgs从+18V到+20V的Rds(on)变化不大,导通损耗差别不明显。

富昌设计小建议:最新一代SiC MOSFET建议使用+18V驱动电压。对降低驱动损耗以及减少Vgs过冲损坏更加有益。

(2)对于+15V 高电平可否驱动SiC MOSFET

在正常情况下,DATASHEET上没有推荐,不建议使用。但是考虑到与15V驱动的Si IGBT 兼容,需要经过计算导通损耗的增加,设计有足够的散热条件以及考虑到设备整体损耗时,也可以使用。如下图2所示为Vgs与Rds(on)的关系,可知门极电压越高,Rds(on)越小,如果在+15V下工作Rds(on)会比标称值大。

富昌设计小建议:Vgs设置为+15V时,SiC MOSFET损耗会比标称值大。

(3)对于+12V 高电平可否驱动SiC MOSFET

工作原理与+15V驱动电压同理,但是应用会更少,一般不推荐使用。但是一些特殊应用场景,例如在小功率高压辅助电源应用,可能需要兼容目前市面上的Si MOSFET控制IC,又需要使用1700V的SiC MOSFET,客户在综合考量后,如果接受Rds(on)稍高的情况下,是可以使用的。

富昌设计小建议:Vgs设置为+12V时,SIC MOSFET损耗会远远超过标称值,计算损耗时应参考Vgs=+12V时的Rdson。

2.驱动电压低电平Vgs_off是选择0V、-3V还是-5V?

驱动电压低电平的选择要比高电平复杂的多,需要考虑到误开通。误开通是由高 速变化的dv/dt,通过米勒电容Cgd耦合到门极产生门极电压变化,导致关断时ΔVgs超过阈值电压而造成的。因此误开通不仅和阈值电压Vgs(th)有关,还与dv/dt产生的电压变化有关。

(1)对于-3V或-5V关断电压如何选择

首先参考SiC MOSFET的DATASHEET上推荐的关断电压。再考虑门极电压阈值裕度为

ΔVgs_th=Vgs(th)-Vgs_off, 当dv/dt趋于无穷大时,dv/dt产生的门极电压变化为:

ΔVgs=Vbus*Crss/Ciss。可知,当门极电压阈值裕度ΔVgs_th越大于dv/dt造成的门极电压变化ΔVgs时,器件Vgs_off安全裕度越大,误开通风险越小。但是Vgs_off越小,引起Vgs(th)漂移越大,导致导通损耗增加。

富昌设计小建议:综合考量计算ΔVgs_th 后,在实验过程中实测ΔVgs,可以进一步提升实际应用的稳定性和性能。

(2)对于0V关断电压探讨

虽然驱动电压Vgs为0V时已经可以关断SiC MOSFET,但是由于dv/dt引起的ΔVgs,可能会导致SiC MOSFET误导通,导致设备损坏,故而不推荐使用。当然如果是设计的dv/dt非常小,Crss/Ciss比值足够大,并且充分考虑到ΔVgs对SiC MOSFET误导通的影响下,客户可以根据自己的设计而定。

富昌设计小建议:重点考虑dv/dt造成的ΔVgs以及环路等效电感,对误导通的影响,在设置Vgs_off=0V时,才能让系统更加稳定。

Vgs(th)漂移带来的影响,以及影响Vgs(th)的因素

由于宽禁带半导体SiC的固有特征,以及不同于Si材料的半导体氧化层界面特性,会引起阈值电压变化以及漂移现象。为了理解这些差异,解释这些差异与材料本身特性的关系,评估其对应用、系统的影响,需要更多的研究及探索。

(1)Vth漂移对应用的影响

长期来看,对于给定的Vgs, 阈值漂移的主要影响在于会增加Rds(on)。通常来说,增加 Rds(on)会增加导通损耗,进而增加结温。在计算功率循环时,需要把这个增加的结温也考虑进去。

富昌设计小建议:如果开关损耗占比总损耗较高时,可以忽略Vgs(th) 漂移导致的开通损耗。

(2)Vth漂移对器件的基本功能不会被影响,主要有:

● 耐压能力不会受影响;

● 器件的可靠性等级,如抗宇宙射线能力,抵抗湿气的能力等不会受影响;

● Vth漂移会对总的损耗有轻微影响;

(3)影响Vth漂移的参数主要包括:

● 开关次数,包括开关频率与操作时间;

● 驱动电压,主要是Vgs_off;

(4)以下参数对开关操作引起的Vth漂移没有影响:

● 结温;

● 漏源电压,漏极电流;

● dv/dt, di/dt;

总结

本文主要针对驱动电压Vgs和栅极电压阈值Vgs(th)本身对SiC MOSFET在使用过程中的影响做出讨论。

在实际应用过程中,设置的Vgs电压是对设备的可靠性,功率损耗以及驱动电路的兼容性等因素的综合考虑。理论计算只是设计参考的一部分,也可以考虑实际测量获得真实的数据来修正设计参数。实际测量得到的ΔVgs,对设置Vgs_off会更有参考价值,并且会使得SiC MOSFET应用设计更加稳定且充分利用其性能。同时驱动电压Vgs的设置还会受到驱动电阻Ron与Roff、驱动电流以及驱动回路等影响,此处不做展开探讨,富昌电子将在后续连载文章中逐步剖析,敬请期待。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

SiC MOSFET驱动电压的分析及探讨 的相关文章

  • unbuntu18.04 install pytorch1.8-cpu+yolov5

    1 install pytorch 1 change pip source reference link 2 install all pip3 install torchvision 61 61 0 9 0 pip3 install tor
  • 四、数据转换、ros-CAN通讯

    1 CAN通讯 1 1驱动安装 1 1 1在我的gitee上下载test功能包 xff0c 将libusbcan so文件复制到 lib 其他位置 计算机 lib 目录下 1 2参考 我另一篇博客一 2 1 3 下载功能包 1 3 1 在我
  • Ubuntu20.04 服务器版本 命令学习

    1 vim使用 sudo vim 文件名 按a或i进入编辑模式 按两次Esc进入命令模式 输入 xff1a wq 保存退出 输入 xff1a q xff01 退出 2 apt使用 查看更新 sudo apt update 执行更新 sudo
  • 地平线旭日X3派(一)系统配置

    一 SSH登录 1 1 串口配置 43 串口登录 1 1 1无线网络配置 1 2 SSH登录 1 3 修改文件 用vim 1 4 安装togetherROS 1 4 1 安装ROS2 foxy 安装基础功能包 sudo apt instal
  • 关于UDP的普通C/S模型、广播C/S模型以及组播C/S模型

    简述 xff1a UDP与TCP一个主要的区别就是客户端与服务器之间不需要建立连接 xff0c 即不经历三次握手过程 只需要主动发送数据的一方确定接收数据的一方的地址信息 xff08 IP地址 43 端口号 xff09 xff0c 可以这么
  • 里程计(一) 数学模型及STM32实现

    一 首先确保接线和硬件没问题 xff0c 并确定控制逻辑 测试单片机 驱动板 L298N 电机连线是否接通 xff1a 控制板IN1 IN2一个接3 3V一个接GND ENA默认使能 xff1b 控制板IN3 IN4一个接3 3V一个接GN
  • 关于Keil在stm32编写库函数时头文件找不到的解决方法

    最近在自主学习stm32时遇到了fatal error xff1a h files not found xff0c 总结了一下自己的解决方法 1 首先检查在add files有没有选择all files xff0c 如果默认选择source
  • bypassuac的学习

    什么是UAC 为什么要绕过他MSF自带的bypassuac模块 在Vista及更高版本中通过弹框进一步让用户确认是否授权当前可执行文件来达到阻止恶意程序的目的 为什么要绕过他 为了远程执行目标的exe或者bat可执行文件绕过此安全机制 xf
  • thinkphp3.2.3学习(1)

    thinkphp3 2 3学习 xff08 1 xff09 MVC结构 MVC结构 M gt model数据模型 V gt view识图 C gt controller控制器 lt php return array 39 配置项 39 61
  • thinkphp3.2.3学习(2)

    thinkphp3 2 3学习 xff08 2 xff09 如何读取配置文件路由四种url模式url的设置 函数控制器绑定参数url生成跳转页面重定向输入变量 如何读取配置文件 使用C函数 C 属性名 xff1b 动态配置 C 属性名 xf
  • xdebug下载与配置,有这一篇就够了

    xdebug下载与配置 xff0c 有这一篇就够了 xdebug下载与配置环境步骤一步骤二步骤三步骤四步骤五遇到的问题解决方案第一个坑第二个坑第三个坑 下面是我的xdebug的配置 xdebug下载与配置 下载xdebug的地方https
  • windows下3389端口开启和连接

    windows下3389端口开启和连接 开启3389的命令关闭防火墙的命令添加用户添加到管理员组特殊情况 netstat ano 查看端口开放情况 开启3389的命令 REG ADD HKLM SYSTEM CurrentControlSe
  • ssrf绕过

    ssrf绕过 当涉及到SSRF xff08 服务器端请求伪造 xff09 时 xff0c 可以使用以下5种有效负载绕过防御 xff1a 1 xff09 使用CIDR绕过SSRF xff1a http 127 127 127 127 http
  • 测试点的payload

    一些测试点的payload xff0c 后续继续补充 电子邮件地址图片名字 电子邮件地址 以下payload都是有效的电子邮件地址 XSS xff08 跨站脚本 xff09 xff1a test 43 lt script gt alert
  • Jetson Nano GPIO使用、四种模式以及串口解释

    参考 xff1a http www waveshare net study portal php mod 61 view amp aid 61 882https www jianshu com p f98a69b94debhttps blo

随机推荐

  • 一些权限的绕过

    一些权限的绕过 URI绕过后台URI绕过403 URI绕过后台 这是通过以下方式URI来访问后台的技巧 xff1a https target com admin gt HTTP 302 xff08 重定向到登录页面 xff09 https
  • redis的安装以及漏洞学习

    redis的安装以及漏洞学习 redis的安装redis的基本命令redis的一些漏洞redis未授权redis写入文件redis计划任务反弹shell写ssh公钥登录redis主从以上提到的这些漏洞 xff0c 都是基于未授权访问 red
  • python批量检测域名和url能否打开

    python批量检测域名和url能否打开 python批量检测域名和url能否打开批量在浏览器中打开url或者域名总结 最近在挖src xff0c 然后有大量的域名 xff0c 而且大部分打不开 xff0c 所以就很浪费时间 xff0c 写
  • Failed to restart network.service: Unit network.service not found.

    解决 Failed to restart network service Unit network service not found 输入命令时遇到了问题 span class token function service span ne
  • nginx的启动,停止

    nginx的启动 xff0c 停止 启动启动代码格式 nginx的停止有三种方式 xff1a 从容停止快速停止强制停止 验证nginx配置文件是否正确方法一 xff1a 进入nginx安装目录sbin下 xff0c 输入命令 nginx t
  • 虚拟机连不上网解决办法,以及出现Ubuntu connect: Network is unreachable

    虚拟机连不上网解决办法 xff0c 以及出现Ubuntu connect Network is unreachable 问题来源具体过程 问题来源 出现了Ubuntu connect Network is unreachable这个问题 x
  • linux持久化

    linux持久化后门 添加超级用户SUID shellalias 后门inetdcrontab后门ssh公钥免密ssh软连接SSH wrapper后门PAM隐身登录隐藏文件Git hooksPROMPT COMMAND后门PROMPT CO
  • linux恶意进程隐藏

    https mp weixin qq com s 6Z4tErcnusYHTqiSUSVz3A https blog csdn net nzjdsds article details 82919100
  • 图图图图图

  • windows提权总结

    windows提权总结 内核溢出提权Windows系统配置错误提权系统服务权限配置错误注册表键AlwaysInstallElevated可信任服务路径漏洞自动安装配置文件计划任务 Windows组策略首选项提权 SYSVOL GPP SYS
  • 运行Intel realsense L515相机

    运行Intel realsense L515相机 首先去官 https www intelrealsense com sdk 2 xff0c 按照上面的提示安装各种文件 xff0c 然后输入realsense viewer出现可视化窗口 下
  • python的shellcode_loader解释

    python的shellcode loader解释 代码 loader传到主机执行 xff0c shellcode传到自己的服务器上 简单的python shellcode加载器 xff0c 直接上代码 xff0c 注释都在代码里 代码 s
  • 「网络工程师必会技能」-路由器介绍和路由器基本配置

    网络工程师必会技能 路由器介绍和路由器基本配置 xff0c 这是每个网络必须会的技能 xff0c 不是你有证书就一个网络工程师了哦 xff01 以Cisco路由器为例说明 xff1a xff08 1 xff09 访问路由器 访问路由器与访问
  • 英飞凌微控制器,驱动物联网的关键“大脑”

    英飞凌微控制器 xff0c 驱动物联网的关键 大脑 英飞凌各种各样的传感器以及基于它们的创新应用 xff0c 可谓是打开了传感器的 兵器库 xff0c 令人大开眼界 今天 xff0c 我们将进入 计算 这一环节 xff0c 看看唯样商城代理
  • EMC对策产品:TDK扩大了内置ESD保护功能的陷波滤波器阵容

    EMC对策产品 xff1a TDK扩大了内置ESD保护功能的陷波滤波器阵容 新的陷波滤波器同时实现了ESD保护和最大频率为5 3 GHz频段噪声抑制抑制无线通信中产生的TDMA噪声 xff0c 提高无线信号接收灵敏度强大的静电保护能力 xf
  • 这27个电源符号,别再分不清 快收藏起来学习

    这27个电源符号 xff0c 别再分不清 xff01 快收藏起来学习 以下的V代表Volatge的意思 电源符号 解析 VCC C可以理解为三极管的集电极Collector或者电路Circuit xff0c 指电源正极 VDD D可以理解为
  • 74ls160引脚图引脚图和功能真值表

    74ls160引脚图管脚图及功能真值表 xff0c 74ls160引脚图管脚图74LS160的功能真值表 综合电路图 74ls160引脚图管脚图 74LS160的功能真值表 唯样商城是本土元器件目录分销商 xff0c 采用 小批量 现货 样
  • 最全74HC04六反相器中文资料|引脚图及功能表|应用电路图

    最全74HC04六反相器中文资料 引脚图及功能表 应用电路图 最全74HC04六反相器中文资料 引脚图及功能表 应用电路图 xff0c 该74HC04 74HCT04是高速CMOS器件 xff0c 低功耗肖特基的TTL LSTTL 电路 功
  • 房卡一插就有电 酒店插卡取电原理解析

    房卡一插就有电 酒店插卡取电原理解析 酒店插卡取电的原理是什么 xff0c 入住酒店只需用房卡一插就有电 xff0c 原理是什么呢 xff1f 只是一张塑料片不能导电的啊 导读 xff1a 酒店插卡取电的原理是什么 xff0c 入住酒店只需
  • SiC MOSFET驱动电压的分析及探讨

    SiC设计干货分享 xff08 一 xff09 xff1a SiC MOSFET驱动电压的分析及探讨 随着制备技术的进步 xff0c 在需求的不断拉动下 xff0c 碳化硅 xff08 SiC xff09 器件与模块的成本逐年降低 相关产品