C++之完美转发、移动语义(forward、move函数)

2023-05-16

完美转发

1. 在函数模板中,可以将 自己的参数“完美”地转发给其它函数。所谓完美,即 不仅能准确地转发参数的值,还能保证被转发参数的左、右值属性不变。
2. C++11标准引入了右值引用和移动语义,所以,能否实现完美转发,决定了该参数在传递过程使用的是拷贝语义(调用拷贝构造函数)还是移动语义 (调用移动构造函数)。
1. 如果模板中 (包括类模板和函数模板)函数的参数书写成为T&& 参数名 那么,函数既可以接受左值引用,又可以接受右值引用。
2. 提供了模板函数std::forward<T>(参数),用于转发参数如果参数是一个右值,转发之后仍是右值引用;如果 参数是一个左值,转发之后仍是左值引用

move

在我的另一篇文章《C++之右值引用、移动构造函数》提到,左值不能初始化右值引用。

那么我们能不能用左值初始化一个右值引用呢??这里C++给我们了一个函数move();

move()函数

将左值转换为右值,实现对象资源的转移。

下面看个例子

void test2()
{
    vector<int> v;
    for (int i = 0; i < 10; i++)
        v.push_back(i);
    vector<int>vv = v;  //拷贝
    cout << "v  =";
    for (auto x : v)
        cout << x << " ";
    cout << ",  v.addr=" << &v << endl;
    cout << "vv =";
    for (auto x : vv)
        cout << x << " ";
    cout << ", vv.addr=" << &vv << endl;
    cout << "after move v to vvv" << endl;
    vector<int>vvv = move(v);
    cout << "vvv=";
    for (auto x : vvv)
        cout << x << " ";
    cout << ",vvv.addr=" << &vvv << endl;
    cout << "v  =";
    for (auto x : v)
        cout << x << " ";
    cout << ",  v.addr=" << &v << endl;
}

forward

右值引用类型是独立于值的,一个 右值引用作为函数参数的形参时,在函数内部转发该参数给内部其他函数时,它就变成一个左值(因为没有实名的右值被编译器视为左值),并不是原来的类型了。 如果需要按照参数原来的类型转发到另一个函数,可以使用 C++11 提供的 std::forward () 函数,该函数实现的功能称之为 完美转发。
#include<iostream>
using namespace std;
template<typename T>
void PrintT(T& t)
{
    cout << "lvalue" << endl;
}
template<typename T>
void PrintT(T&& t)
{
    cout << "rvalue" << endl;
}
template<typename T>
void TestForward(T&& v)
{
    PrintT(v);
    PrintT(move(v));
    PrintT(forward<T>(v));
    cout << endl;
}
int main()
{
    TestForward(1);
    int x = 1;
    TestForward(x);
    TestForward(forward<int>(x));
    TestForward(forward<int&>(x));
    TestForward(forward<int&&>(x));
    return 0;
}
分析一下
TestForward(1);实参为右值,T&&->右值引用
1. PrintT(v);已经实名的右值编译器当成左值处理,实参->左值
2. PrintT(move(v));move将左值转换为右值,实参->右值
3. PrintT(forward<T>(v));模板参数为右值引用,最终得到一个右值,实参->右值
TestForward(x);实参为左值,T&&->左值引用
1. PrintT(v);实参->左值
2. PrintT(move(v));move将左值转换为右值,实参->右值
3. PrintT(forward<T>(v));模板参数为左值引用,最终得到一个左值,实参->左值
TestForward(forward<int>(x));模板参数类型为int->右值,最终得到右值,T&&->右值引用
1. PrintT(v);已经实名的右值编译器当成左值处理,实参->左值
2. PrintT(move(v));move将左值转换为右值,实参->右值
3. PrintT(forward<T>(v));模板参数为右值引用,最终得到一个右值,实参->右值
TestForward(forward<int&>(x));模板参数类型为左值引用,最终得到一个左值,T&&->左值引用
1. PrintT(v);实参->左值
2. PrintT(move(v));move将左值转换为右值,实参->右值
3. PrintT(forward<T>(v));模板参数类型为左值引用,最终得到一个左值,实参->左值
TestForward(forward<int&&>(x));模板参数类型为右值引用,最终得到一个右值,T&&->右值引用
1. PrintT(v);已经实名的右值编译器当成左值处理,实参->左值
2. PrintT(move(v));move将左值转换为右值,实参->右值
3. PrintT(forward<T>(v));模板参数类型为右值引用,最终得到一个右值,T&&->右值引用

移动语义

如果一个对象中有堆区资源,需要编写拷贝构造函数和赋值函数,实现深拷贝。
深拷贝把对象中的堆区资源复制了一份,如果源对象(被拷贝的对象)是临时对象,拷贝完就没什么用了,这样会造成没有意义的资源申请和释放操作。如果能够 直接使用源对象拥有的资源,可以 节省资源申请和释放的时间。C++11 新增加的移动语义就能够做到这一点。

下面给出示例:

我们当时提到的深浅拷贝,深拷贝解决了浅拷贝造成的内存泄露问题,但是反复的构造和释放对象拉低了程序的效率。所以我们在想是否能直接使用原对象的资源,这样可以大大提高效率

#include<iostream>
using namespace std;
class AA
{
public:
    int* m_data = nullptr;
    AA() = default;
    void alloc()
    {
        m_data = new int;
        memset(m_data, 0, sizeof(int));    //初始化已分配的内存
    }
    AA(const AA& a)    //拷贝构造函数
    {
        cout << "调用了拷贝构造函数" << endl;
        if (m_data == nullptr)    //如果没有分配内存,就分配
            alloc();
        memcpy(m_data, a.m_data, sizeof(int));
    }
    AA(AA&& a)    //移动构造函数
    {
        cout << "调用了移动构造函数" << endl;
        if (m_data != nullptr)    //如果分配内存,释放掉
            delete m_data;
        m_data = a.m_data;
        a.m_data = nullptr;
    }
    AA& operator=(const AA& a)
    {
        cout << "调用了赋值函数" << endl;
        if (this == &a)    //避免自我复制
            return *this;
        if (m_data == nullptr)    //如果没有分配内存,就分配
            alloc();
        memcpy(m_data, a.m_data, sizeof(int));
        return *this;
    }
    AA& operator=(AA&& a)
    {
        cout << "调用了移动赋值函数" << endl;
        if (this == &a)    //避免自我复制
            return *this;
        if (m_data != nullptr)    //如果分配内存,释放掉
            delete m_data;
        m_data = a.m_data;
        a.m_data = nullptr;
        return *this;
    }
    ~AA()
    {
        if (m_data != nullptr)
            delete m_data;
        m_data = nullptr;
    }
};

测试案例1

void test1()
{
    cout << "test1-begin" << endl;
    AA a1;
    a1.alloc();
    *a1.m_data = 3;
    cout << "a1.m_data=" << *a1.m_data << endl;
    AA a2(a1);
    cout << "a2.m_data=" << *a2.m_data << endl;
    AA a3;
    a3 = a1;
    cout << "a3.m_data=" << *a3.m_data << endl;
    cout << "test1-end" << endl << endl;
}

这是一组普通的测试案例,返回结果

注意:

  1. 对于一个左值,会调用拷贝构造函数,但是有些左值是局部变量,生命周期也很短,能不能也移动而不是拷贝呢?C++11为了解决这个问题,提供了std:move0方法来将左值转义为右值,从而方便使用移动语义。它其实就是告诉编译器,虽然我是一个左值,但不要对我用拷贝构造函数,用移动构造函数吧。左值对象被转移资源后,不会立刻析构,只有在离开自己的作用域的时候才会析构,如果继续使用左值中的资源,可能会发生意想不到的错误。

  1. 如果没有提供移动构造/赋值函数,只提供了拷贝构造/赋值函数,编译器找不到移动构造/赋值函数就去寻找拷贝构造/赋值函数。

  1. C++11中的所有容器都实现了移动语义,避免对含有资源的对象发生无谓的拷贝

  1. 移动语义对于拥有资源(如内存,文件句柄)的对象,如果是基本类型,使用移动语义没有意义。

测试案例2

void test2()
{
    cout << "test2-begin" << endl;
    AA a1;
    a1.alloc();
    *a1.m_data = 3;
    AA a6(std::move(a1));
    cout << "a6.m_data=" << *a6.m_data << endl;
    AA a7;
    a7 = std::move(a1);
    cout << "a7.m_data=" << *a7.m_data << endl;
    cout << "test2-end" << endl << endl;
}

返回结果

test2-begin
调用了移动构造函数
a6.m_data=3
调用了移动赋值函数
//程序到这里崩溃了为什么呢?
这里就是因为a1被转移资源后,下面再次对a1进行转移资源导致报错。

测试案例3

void test3()
{
    cout << "test3-begin" << endl;
    auto f = [] {AA aa; aa.alloc(); *aa.m_data = 8; return aa; };
    AA a4 = f();
    cout << "a4.m_data=" << *a4.m_data << endl;
    AA a5;
    a5 = f();
    cout << "a5.m_data=" << *a5.m_data << endl;
    cout << "test3-end" << endl << endl;
}

返回结果

test3-begin
调用了移动构造函数
a4.m_data=8
调用了移动构造函数
调用了移动赋值函数
a5.m_data=8
test3-end
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C++之完美转发、移动语义(forward、move函数) 的相关文章

  • 蓝桥杯必备模块及常用操作(python)

    蓝桥杯必会模块 xff08 python xff09 xff1a 字符类型模块日期函数模块 常用 优先级队列itertools模块collections模块Bisect模块List 集合set 集合Math模块 字符类型模块 先看点常用但比
  • string的几个常见库函数

    文章目录 前言一 strlen直接求字符串长度二 strcpy用来赋值三 strcat追加字符串四 strcmp用于比较两个字符串五 strstr子串查找六 strtok应用七 加长度限制八 strerror 九 其他操作1 iscntrl
  • vector详解

    在开始学习C 43 43 的STL之后 xff0c 相信大家都学会通过查文档来了解一些库函数 xff0c 今天我来给大家介绍vector xff0c 从基本的使用到vector背后的源码实现 xff0c 迭代器等展开讲 xff0c 仔细阅读
  • 如何利用开源思想开发一个SEO友好型网站

    当你对一个网站进行 SEO 优化的时候 xff0c 不要期望你的努力能立即得到回报 耐心等待并更正内容营销策略 xff0c 最终会发现你的网站很受用户欢迎 下面就教你如何利用开源思维开发一个SEO友好型网站 xff01 首先 xff0c 你
  • 【STM32】串口通讯USART串口中断配置

    目录 STM32 USART 简介 程序编写 硬件接线 实际波形 STM32 USART 简介 STM32的USART通用同步异步收发器是一个串行通信设备 xff0c 可以灵活的与外部设备进行全双工数据交换 有别于USART xff0c 还
  • openmv第三天之标记跟踪

    AprilTag是一个视觉基准系统 感觉就是一个可以定位 校准帮助openmv来找到 定位的东西 官方解释的用处 xff1a 简单来说 xff0c 只要把这个tag贴到目标上 xff0c 就可以在OpenMV上识别出这个标签的3D位置 xf
  • 【A_star三维路径规划】A_star算法无人机三维路径规划【含Matlab源码 1387期】

    一 A star算法简介 0 引言 随着现代技术的发展 飞行器种类不断变多 应用也日趋专一化 完善化 如专门用作植保的大疆PS X625无人机 用作街景拍摄与监控巡察的宝鸡行翼航空科技的X8无人机 以及用作水下救援的白鲨MIX水下无人机等
  • 【路径规划】A_star算法机器人动态避障路径规划【含Matlab源码 1033期】

    一 A star算法简介 1 A Star算法及其应用现状 进行搜索任务时提取的有助于简化搜索过程的信息被称为启发信息 启发信息经过文字提炼和公式化后转变为启发函数 启发函数可以表示自起始顶点至目标顶点间的估算距离 也可以表示自起始顶点至目
  • C语言打印输出字符串的几种方法

    思路分析 知识点补充 1 xff0c 在C语言中 xff0c 一维数组的数组名实际上就是指向数组首项元素的指针 2 xff0c 如果指针p已经指向一个字符串 xff0c 判断字符串是否结束 xff0c 一般采用while p 61 39 0
  • 对‘fmt::v9::detail::throw_format_error(char const*)’未定义的引用

    在学习视觉SLAM十四讲第十二章的过程中 xff0c 尝试跑了一下单目稠密地图构建的代码 xff0c 在编译源代码的过程中遇到该问题 xff0c 编译结果中显示长篇的 CMakeFiles dense mapping dir dense m
  • [STM32F103C8T6] 串口

    1 非中断串口发送数据 串口发送 接收函数 xff1a HAL UART Transmit 串口发送数据 xff0c 使用超时管理机制 HAL UART Receive 串口接收数据 xff0c 使用超时管理机制 HAL UART Tran
  • 【C语言】strcat函数_字符串追加/连接

    前言 xff1a 在C C 43 43 的学习过程当中一定一定要多刷题 xff0c 牛客网作为国内内容超级丰富的IT题库 xff0c 尤其是它的C C 43 43 xff0c 有从入门到大厂真题 xff0c 而且大部分的考试题目也是从中抽取
  • SWUST OJ448: 字符串查找

    题目描述 在一段句子中找出给定字符串出现在句子中第一个字母出现的位置 句子中字符个数小于4500 字符串字符个数小于120 输入 两行 第一行是给定字符串 第二行是句子 输出 整数 xff0c 字符串出现的位置 样例输入 abcde thi
  • C语言十进制转十六进制

    输入 xff1a 123 输出 xff1a 7B include lt stdio h gt int main int n scanf 34 d 34 amp n int a 100 int count int i 61 0 while 1
  • CentOS软件那么老为什么大家还要用它?

    作为一个专业的服务器系统 xff0c RHEL 系统理论上每一个软件包都有 RedHat 内部的人员负责维护 xff0c 这个维护包括长期 xff08 和系统生命周期一样长 xff09 的开发 更新 测试 运维等 也就是说你能从 RHEL
  • vscode配置C/C++调试环境

    转自作者知乎的原创文章 vscode配置C 43 43 调试环境 在环境变量path中添加mingw中bin后 在vscode界面侧边栏点击调试界面 xff0c 创建launch json文件 添加配置后保存就行 下为我的添加配置后自动生成
  • ROS通信机制~话题通信(Publisher&Subscriber)·笔记2

    系列文章目录 xff1a ROS开发 xff08 ubuntu xff09 笔记 1 嘻 嘻的博客 CSDN博客 ROS通信机制 服务通信 server amp client 笔记3 嘻 嘻的博客 CSDN博客 话题通信 理论模型 xff1
  • postman Windows的详细安装过程

    1 首先去postman官网下载postman 官网地址 xff1a Download Postman Get Started for Free https www postman com downloads 2 根据你浏览器下载的所在位置
  • 数据结构链表的结构体定义的理解(C语言)

    此理解有参考数据结构的教材和一些博主的文章 xff1b 1 先补充一下typedef在此处的基本用法 xff1a typedef可用来建立已经定义好的数据类型的别名 形式为 xff1a typedef 已有变量名 别名 通俗的来说就是给已有
  • ROS安装与Rviz的摄像头视频采集与标定

    文章目录 一 ROS的安装与配置1 添加 ROS 软件源 xff0c 将下列命令输入到 Ubuntu 的终端执行2 添加密钥 xff0c 将下列命令输入到 Ubuntu 的终端执行3 安装desktop full4 初始化rostep5 设

随机推荐

  • HTTP协议的基本格式

    目录 一 HTTP请求 1 1 首行 1 1 1 URL 1 1 2 方法 1 2 请求报头 xff08 header xff09 1 2 1 host 编辑 1 2 2 Content Length和Content Type 1 2 3
  • 思岚雷达win与ubuntu18.04连接并测试详细过程

    雷达简介 包含套件 雷达模组 xff08 内置pwm电机驱动 xff09 usb适配器 Micro USB线缆 电源线 接线方式 ps 雷达不需额外的电源供电 xff0c 直接使用电脑USB接口 xff0c 5V供电 驱动安装 USB 适配
  • c/c++常见字符串函数(strlen,strcmp,strcat,strcpy,strstr,strncpy,strncat,strncmp)的详解和自己编辑实现

    下面介绍c语言中指针与数组的面试题 再看下列题之前首先要知识储备 下面用c语言介绍常用字符串函数和进行编译 一 介绍strlen函数 unsigned int strlen char s 或size t strlen const char
  • 【C语言】学数据结构前必学的结构体struct详细

    佛祖说 xff0c 他可以满足程序猿一个愿望 程序猿许愿有生之年写出一个没有bug的程序 xff0c 然后他得到了永生 目录 1 结构体的声明与定义 1 1结构体是什么 xff1f 1 2为什么要有结构 xff1f 1 3结构体的声明 1
  • 数据结构哈希查找的C语言实现

    大家好 xff0c 我是练习编程时长两年半的昆工第一ikun xff0c 今天我们来分享查找算法中的一个 哈希查找 xff0c 哈希查找适用于有庞大的数据量时的查找 xff0c 是一种很好用的查找算法 xff0c 话不多说 xff0c 开团
  • 为什么很多程序员喜欢linux系统?

    a gt Linux哪些行业在运用 xff1f Linux系统运用极其广泛 xff0c 不少用户只知道windows xff0c 是因为 xff0c Linux的运用主要是在企业端 现在科技极其发达 xff0c 我们手机在手 xff0c 就
  • Linux Ubuntu下的标准IO相关库函数的介绍与使用

    大家好 xff0c 我是练习编程时长两年半的个人练习生昆工第一ikun xff0c 今天我们来分享一下标准IO相关函数库的介绍与使用 xff0c 话不多话 xff0c 开团 xff01 xff01 xff01 xff01 xff01 目录
  • Linux Ubuntu下的文件IO介绍及实例应用(C语言)

    大家好 xff0c 我是练习编程时长两年半的个人练习生昆工第一ikun xff0c 昨天咋们说了标准IO xff0c 今天咋们来分享文件IO xff0c 以及一个很有趣的实例 xff0c 给图片加密 xff0c 使其无法打开 话不多说 xf
  • 输入年月日得出该天是星期几(C语言)

    大家好 xff0c 我是练习编程时长两年半的个人练习生昆工第一ikun xff0c 昨天因为在写Thoughtworkers的2018年笔试题 xff0c 所以没有更新 xff0c 今天就先把笔试题中的一个函数分享出来 xff0c 该函数可
  • Linux下的UDP服务器客户端的搭建(C语言实现)

    大家好 xff0c 我是练习编程时长两年半的个人练习生昆工第一ikun xff0c 昨天我们说了搭建TCP的服务器和客户端 xff0c 今天我们就来分享一下UDP的服务器和客户端搭建 UDP的特点是无连接 xff0c 多个客户端可以发送消息
  • 使用STL库list类实现单双向约瑟夫环问题(C++)

    目录 一 单向约瑟夫环 1 问题描述 2 list类函数用法 xff08 1 xff09 list构造 xff08 2 xff09 list iterator迭代器 xff08 3 xff09 list容量 xff08 4 xff09 li
  • 使用Qt制作个人计算器

    我们知道windows系统有自带的计算器 xff0c 那么我们也可以用Qt制作一款类似的个人计算器 xff0c 实现整数的加减乘除括号运算 xff0c 界面设计使用Qt xff0c 计算使用逆波兰算法 xff0c 下面我就来分享一下个人计算
  • 使用Qt制作简易的图片查看器

    我们知道windows系统有自带的图片查看器 xff0c 那么我们也可以用Qt制作一款类似的图片查看器 xff0c 实现图片的打开查看以及图片的翻页 xff0c 下面我就来分享一下图片查看器的制作方法 目录 一 描述 二 代码实现 1 头文
  • 计算机网络第二章总结

    目录 1 1物理层的基本概念 1 2数据通信的基础知识 1 2 1数据通信系统的模型 1 2 2信道的几个基本概念 常用的编码方式 1 2 3信道的极限容量 1 3物理层下面的传输媒体 1 3 1导引型传输媒体 1 双绞线 2 同轴电缆 3
  • 假溢出的解决策略

    假溢出 xff1a 在顺序队列中 xff0c 队列出队时并没有像线性表那样使后面的元素往前移 为了解决假溢出 xff0c 常用的方法是把队列想成一个首尾相接的环 xff0c 这种叫循环队列 在循环队列的入队和出队操作中 xff0c 用到了求
  • C++之lambda函数(匿名函数)

    lambda函数简介 lambda函数是C 43 43 11标准新增的语法 xff0c 也称为lambda表达式或匿名函数 lambda函数的特点是 xff1a 距离近 简洁 高效和功能强大 优点 声明式编程风格 xff1a 就地匿名定义目
  • 远程桌面基本原理

    远程桌面基本原理 远程桌面是一种技术 xff0c 它允许用户通过互联网或局域网远程访问另一台计算机的桌面 这种技术可以让用户在不同的地方使用同一台计算机 xff0c 或者在同一地方使用不同的计算机 远程桌面技术在现代计算机应用中发挥着重要的
  • C++之迭代器

    迭代器 C 43 43 中 xff0c 迭代器就是类似于指针的对象 xff0c 但比指针的功能更丰富 xff0c 它提供了对对象的间接访问 xff0c 每个迭代器对象代表容器中一个确定的地址 举个例子 xff1a void test vec
  • C++之类模板全特化和偏特化

    类模板 类模板是通用类的描述 xff0c 使用任意类型 xff08 泛型 xff09 来描述类的定义 使用类模板的时候 xff0c 指定具体的数据类型 xff0c 让编译器生成该类型的类定义 注意 xff1a 函数模板中可以不指定具体数据类
  • C++之完美转发、移动语义(forward、move函数)

    完美转发 1 在函数模板中 xff0c 可以将 自己的参数 完美 地转发 给其它函数 所谓完美 xff0c 即 不仅能准确地转发参数的值 xff0c 还能保证被转发参数的左 右值属性不变 2 C 43 43 11标准引入了右值引用和移动语义