i2c那些坑

2023-05-16

origin:http://bbs.ntpcb.com/simple/?t126695.html

“I2C”的那些坑

一般情况下, i2c 设备焊接没什么问题,按照设备手册一步步来,基本上就顺风顺水能够用起来。如果这么一个简单的东西,有时候想要的结果死活不出来,反复的检查问题的原因,查询解决办法,核查设备的数据手册,甚至发送和接收的每一条命令与数据都知道是什么意思,仍然无法解决问题,那该怎么办呢? 
本文主要针对 i2c 设备,讲解如何解决 i2c 设备主机与从机直接无法正常数据交互的问题,侧重点是针对硬件设计不太合理、i2c 设备设计不标准导致总线故障的情况,并且通过分析现象,提出解决方案。对于在设备初始化中,没有设置相应的寄存器或者发送命令,而导致的无法获取想要的数据情况,不作详细介绍。
 
1 i2c 基本用法
i2c 总线是一种简单、双向二线制同步串行总线。所有主机在 SCL 线上产生它们自己的时钟来传输总线上的报文,SDA 线传输每个字节必须为 8 位,每次传输可以发送的字节数量不受限制,每个字节后必须跟一个响应位。在空闲状态时,SCL 与 SDA 均为高电平。 
通常一些低功耗 i2c 设备,芯片引脚使用上拉输出即可满足与其正常数据交互,还有一些 i2c 设备,则需要在总线上外加一个上拉电阻,此时相应的 I/O 配置成开漏输出,其他的按照芯片手册进行标准配置。
 
2 硬件问题汇总
 
2.1  无法正常拉高拉低引脚 
首先确定 SDA 与SCL 引脚能够被拉高、拉低,检测方式直接软件控制 I/O 口输出引脚低电平/高电平,测量引脚电压是否能够随着芯片引脚的设置输出相应的状态。
如果不能被拉低,检测虚焊、上拉电阻断开、i2c 设备是否正常、芯片引脚是否损坏等问题,确保能够正常被拉高或者拉低。
2.2  电气特性无法满足
如果正常拉高、拉低的情况下,依然无法正常读取数据。通常建议,根据负载电流更换小阻值的电阻。
如果需要详细知道原因,就具体查询 i2c 设备电气特性。大多数 i2c 设备电气特性,大致下图所示
通常这块内容在 i2c 设备电气特性这一块,主要讲解电平拉高拉低的最长时间、最短时间,以及处于高电平与电平的阈值与持续时间等等内容。
硬件设计,为了降低单片机的功耗与保护芯片引脚,在满足负载电流和负载电容相关要求的前提下,阻值设置通常比较大。如果同一个总线上挂载多个 i2c 设备, 即使在 I/O 口配置正确的前提下,也会导致驱动能力不足。
现象是拉高电压不足,在拉高、拉低过程中消耗时间过长。这两个问题通常还引起数据线与时钟线:拉高时,高电压持续时间过短;拉低时,低电压持续时间过短。用示波器抓取图形:从波形上看,显示是尖波、斜波、杂波等不符合 i2c 设备电气特性的波形;从数据上看,数据线高电平持续时间过小 ,上升沿时间过长 ,下降沿时间过长等等数据超出设备电气特性的有效值。典型杂波图,如下所示
如果出现此类异常,建议更换小一点的电阻,用来增强总线驱动能力,提高电平转换速度。应当注意的是每个 MCU 的耐受电流不一样,减小电阻应避免超过相应引脚承受电流的最大值。
 
3 SDA 死锁
如果i2c 设备的数据偶尔能够正确获取,但是仍然会在总线发送数据或者命令的时候,爆出总线读写错误,那么有可能遇到下面的死锁问题,死锁时候,就是数据线被拉低,主机无法拉高。死锁一般发生在从机上,且为数据线死锁。因为i2c总线是共享的,如果需要确定,是否是从机死锁,可以参照下面两幅图,串联电阻进行测试 
如上图所示,如果从机死锁,即从机拉低电平,此时检测到的电压为1/3 Vcc。
如上图所示,如果主机死锁,即主机拉低电平,此时检测到的电压为 1/11 Vcc。依据这个原理,可以准确判定死锁的具体位置,多个传感器依据类似方式进行定位。
 
3.1 反复重启导致死锁3.1.1 现象
如果设备需要反复重启,很有可能在从机设备返回数据的时候,SDA被锁住。具体原因是从机设备在回数据,还没有发送完成,主机时钟消失,从机等待时钟信号, MCU重启,如果从机设备的电源没有复位,从机继续等待 MCU 时钟信号,数据一直被钳住,总线无法完成数据交互。
3.1.2 解决方式
解决重启导致总线死锁,一种方式可以如同 rt-thread 驱动解决方式一样,在系统复位的时候,提供9个时钟信号,解初总线死锁;另一种是在按下复位键初始化的时候,给从机设备电源断电重启,这个需要引脚控制。
3.1.3 9 个时钟信号
i2c 设备进行读写操作的过程中,在从机钳住总线的期间,MCU 异常复位,会导致 SDA 死锁,异常产生出现在俩个阶段:从机响应阶段、从机发送数据阶段。下面将针对这两种异常,对时钟信号进行解释,并且总结其他原因,得出结论。
(a) 从机响应阶段
MCU 在开始信号后发送地址,得到从机设备响应,准备开始返回数据,在这个时候,从机将 SDA 信号拉为低电平,如果 MCU 异常复位,会导致总线上 SCL 停止发送时钟信号,从机等待 MCU 的时钟信号,产生钳住并且拉低  SDA 的现象。如果想要解锁 SDA,从机需要 9 个时钟信号,使得从机完成响应,释放 SDA 。
(b) 从机发送数据阶段
如果从机响应完成了,开始给 MCU 返回数据。这个数据有八位,每一位都有可能为低,如果在数据低位,MCU 异常复位,停止发送时钟信号,从机就会等待 MCU 的时钟信号,产生钳住并且拉低  SDA 的现象。如果想要解锁 SDA,从机需要 1-8 个时钟信号,使得从机完成数据响应,释放 SDA 。
(c)其他情况
在从机一个 8 位数据发送完成后,等待 MCU 响应, 即使属于 MCU 的,从机不再钳住 SDA,没有时钟,数据交互停止。
在主机发送数据阶段,总线所有权在主机,主机异常,数据交互停止,总线释放。所以,这些情况下,不存在 SDA 死锁的情况。
(d)结论
综上所述,解锁 SDA 从机最多需要 9 个时钟信号,也就是异常复位后,MCU 至少发送需要 9 个时钟信号,完成 i2c 总线的 SDA 解锁。所以,RT_Thread 为了避免此类问题的产生,在 i2c 驱动初始化,对总线进行判断,判断是否需要解锁,如果需要,就进行解锁,确保 i2c 设备不会因为这个问题导致数据交互失败。
3.2 多个 i2c 设备导致死锁
多 i2c 设备除了异常复位导致死锁,还会形成相互干扰的问题,一般情况下,不会把同种从机地址挂在同一条总线上,但除此之外,有些 i2c 设备设计不是按照标准的 i2c 总线协议设计,在 i2c 总线共享的前提条件下,有的设备只要总线上从机地址就会有响应。这样由于从机的错误响应,使得各个 i2c 总线异常,甚至钳住总线,导致 I2C 总线进人一种死锁状态。 
解决方式,这样的不标准i2c设备,单独使用一个总线,避免干扰,或者单独一个独立引脚,控制电源。
来源:RT-Thread
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

i2c那些坑 的相关文章

  • I2C总线和触摸屏驱动移植实战-linux驱动开发第9部分-朱有鹏-专题视频课程

    I2C总线和触摸屏驱动移植实战 linux驱动开发第9部分 9306人已学习 课程介绍 本课程是linux驱动开发的第9个课程 xff0c 主要内容是linux的I2C子系统以及电容触摸屏驱动的移植 学习本课程的核心点在于I2C子系统 xf
  • nRF52832的I2C例程代码

    nRF52832的I2C例程代码 include 34 nrf drv i2c h 34 include 34 app error h 34 define I2C SCL PIN 0 SCL引脚号 define I2C SDA PIN 1
  • I2C设备主机与从机地址设置

    1 I2C主机与从机定义 I2C设备一般使用MCU作为主机 xff0c 主机与从机通过总线连接起来 xff0c 分别是SCL时钟总线和SDA数据总线 xff0c 主机发送给从机SCL时钟信号 xff0c SDA发送数据 xff0c 如下图所
  • DHT12温湿度传感器IIC,I2C接口调试心得和代码说明

    来源 xff1a http www fuhome net bbs forum php mod 61 viewthread amp tid 61 2141 DHT11那个单总线的温湿度传感器用的很多了 xff0c aosong推出了DHT12
  • PX4通过I2C方式添加自定义传感器(2)

    PX4 I2C通信方式传感器驱动分析 xff08 以ets airspeed为例 xff09 1 说明 这篇文章我们就来看看I2C传感器的驱动过程 xff0c 当然里面也有很多东西我不是很理解 xff0c 所以仅谈我领悟的一些东西 我就以e
  • 首个单芯片超小封装I2C转PWM解决方案

    ZW10I8X系列 高性能工业级16位高精度I2C转PWM接口SOC芯片 接口标准 符合飞利浦的I2C标准规范 xff0c 目前支持的速度为小于100kbit 建议使用50k 1个使能脚 xff08 ZW10I8xE后缀带E的 xff09
  • 关于I2C和SPI总线协议

    关于I2C和SPI总线协议 IICvs SPI 现今 xff0c 在低端数字通信应用领域 xff0c 我们随处可见IIC Inter Integrated Circuit 和 SPI Serial Peripheral Interface
  • I2C总线基础知识及操作详解

    I2C总线是一种简单的双向两线式同步串行总线 xff0c 最初由Philips公司开发 xff0c 后又经过几次发展和完善 xff0c 目前已被业界厂商广泛采用 xff0c 成为最常用的板级通信总线之一 xff0c 大量应用于处理器与外围设
  • I2C驱动体系结构一:驱动软件概念与对应硬件的关系

    一 概念 xff1a 1 设备 xff1a struct device xff1a 该数据结构是对物理设备的软件抽象 xff0c 比如I2C slave xff08 对应i2c client xff09 和I2C 适配器 xff08 对应i
  • I2C总线和SPI总线

    I2C串行总线一般有两根信号线 xff0c 一根是双向的数据线SDA xff0c 另一根是时钟线SCL I2C协议 2条双向串行线 xff0c 一条数据线SDA xff0c 一条时钟线SCL SDA传输数据是 大端传输 xff08 字节高位
  • I2C通讯协议介绍

    2019独角兽企业重金招聘Python工程师标准 gt gt gt I2C总线是PHLIPS公司在20世纪80年代推出的一种串行总线 具有引脚少 xff0c 硬件实现简单 xff0c 可扩展性强的优点 I2C总线的另一优点是支持多主控 xf
  • I2C—读写EEPROM

    1 I2C协议简介 I2C通讯协议 Inter xff0d IntegratedCircuit 是由Phiilps公司开发的 xff0c 由于它引脚少 xff0c 硬件实现简单 xff0c 可扩展性强 xff0c 不需要USART CAN等
  • I2C 简介

    1 I2C 简介 这里的内容参考的是 2014 4 4 的 V 6 版本的官方 I2C Bus 规格书 xff0c 第六章有给出相应的链接 1 1 引脚 I2C 一般而言是一种同步半双工的通信方式 xff0c 所以除了电源引脚之外 xff0
  • 什么是I2C通信

    ARM体系 I2C通信 一 什么是I2C 1 I2C总线是由Philips公司开发的一种简单 双向二线制同步串行总线 它只需要两根线即可在连接于总线上的设备之间传送信息 2 主设备用于启动总线传送数据 xff0c 并产生时钟以开放传送的设备
  • Linux控制I2C/SMBus设备

    平台 xff1a 树莓派 bcm2835 Raspberry Pi 3 Model B Rev 1 2 I2C是Philips开发的一种两线通信协议 xff0c 常用于一些对速度要求不高的小型器件上 SMBus是系统管理总线 xff0c 基
  • 【总线】I2C 通信协议

    目录 I2C 总线协议概述 参数总结 I2C 的工作原理 寻址 读 写位 数据帧 I2C数据传输的步骤 具有多个从机的单个主机 具有多个从机的多个主机 I2C的优缺点 优点 缺点 文章参考 I2C 总线协议概述 I2C 总线广泛应用在 OL
  • I2C接口

    I2C的结构和特点 他是一具有两条总线线路 即一条串行数据线SDA和一条串行时钟线SCL 每个连接到总线上的器件都可以通过唯一的地址联系主机 它是一个真正的多主机总线 数据传输通过冲突检测和仲裁防止数据被破坏 串行的8位双向数据传输位速率更
  • docker 容器内的 I2C

    我正在尝试在 docker 容器内的树莓派上使用 i2c 引脚 我使用 RUN 安装所有模块 但是当我使用 CMD 运行我的 python 程序时 我收到一条错误消息 Trackback most recent call last file
  • 在 Raspberry Pi 上使用 Python smbus - 与语法混淆

    我正在尝试在 Raspberry Pi 上使用 python smbus 使用 I2C 与 MMA7660 加速计芯片进行通信 在下面的代码中 我正在读取芯片的寄存器 0x 00 0x01 0x02 和 0x03 并且我得到的值完全相同 查
  • 如何转换温度传感器得到的值?

    我在ST工作Temperature sensor hts221 我用I2C与传感器的命令通信 我从文档中看到类似以下文字 enter code here Temperature data are expressed as TEMP OUT

随机推荐

  • C++设计模式13:责任链模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式7:桥接模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式8:组合模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式11:享元模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式15:解释器模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式16:迭代器模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式21:策略模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式18:备忘录模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式20:状态模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • stm32直流电机驱动与测速

    stm32直流电机驱动与测速 说实话就现在的市场应用中stm32已经占到了绝对住到的地位 xff0c 51已经成为过去式 xff0c 32的功能更加强大 xff0c 虽然相应的难度有所增加 xff0c 但是依然阻止不了大家学习32的脚步 x
  • C++设计模式22:模板方法模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++ 设计模式23:访问者模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式17:中介者模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式14:命令模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • GPS 和 RTK 定位

    refers xff1a https blog csdn net u012241570 article details 80802675 GPS定位的基本原理 测量出已知位置的卫星到地面GPS接收器之间的距离 xff0c 然后接收器通过与至
  • 关于GD32的CMakeLists以及gcc部分编译选项的解释

    set CMAKE SYSTEM NAME Generic cmake最低版本 cmake minimum required VERSION 3 0 0 工程名称 语言 project TEST PRJ NAME LANGUAGES C C
  • ulimit -s 指定栈上的内存上限

    转自 xff1a http blog chinaunix net uid 24439730 id 144094 html ulimit s 指定栈上的内存上限 xff0c 单位为KB xff0c 如 xff1a root 64 wdqf1w
  • C++头文件重复包含问题

    为了避免同一个文件被include多次 有两种方式 1 span class token macro property span class token directive keyword ifdef span SOMEFILE H spa
  • TCP(select函数模型)

    客户端代码 include lt stdio h gt include lt sys types h gt include lt sys socket h gt include lt arpa inet h gt include lt st
  • i2c那些坑

    origin http bbs ntpcb com simple t126695 html I2C 的那些坑 一般情况下 xff0c i2c 设备焊接没什么问题 xff0c 按照设备手册一步步来 xff0c 基本上就顺风顺水能够用起来 如果