网络编程懒人入门(一):快速理解网络通信协议(上篇)

2023-05-16

1、写在前面


论坛和群里常会有技术同行打算自已开发IM或者消息推送系统,很多时候连基本的网络编程理论(如网络协议等)都不了解,就贸然定方案、写代码,显得非常盲目且充满技术风险。

即时通讯网论坛里精心整理了《[通俗易懂]深入理解TCP协议》、《不为人知的网络编程》、《P2P技术详解》、《高性能网络编程》这几个网络编程的系列文章,甚至还有图文并貌+实战代码的《NIO框架入门》等等。资料虽好,无奈很多同行或许是时间紧迫,也或许是心态浮躁,反正就是没办法静下心来仔细研读,导致错过了很多必须掌握的网络编程知识基础(如果您正打算从零开发移动端IM,则建议您从此文开始《新手入门一篇就够:从零开发移动端IM)。

本次《网络编程懒人入门》系列文章(共3篇),将为大家(尤其是上面说的浮躁的开发者同行)提供懒人快速入门,希望在你没办法耐心读完上面的几个系列文章(但还是强烈建议优先去读一读)的情况还能对基本的网络编程知识有所了解和掌握,从而对您的IM系统或消息推系统的技术选型、方案制定、代码编写起到理论支撑作用。

本文将从网络通信协议讲起,懒人们,动起来^_^ !

2、正文引言


我们每天使用互联网,你是否想过,它是如何实现的?

全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?

互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。

下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。

3、系列文章


本文是系列文章中的第1篇,本系列文章的大纲如下:

  • 《网络编程懒人入门(一):快速理解网络通信协议(上篇)》(本文
  • 《网络编程懒人入门(二):快速理解网络通信协议(下篇)》
  • 《网络编程懒人入门(三):快速理解TCP协议一篇就够》
  • 《网络编程懒人入门(四):快速理解TCP和UDP的差异》
  • 《网络编程懒人入门(五):快速理解为什么说UDP有时比TCP更有优势》


如果您觉得本系列文章过于基础,您可直接阅读《不为人知的网络编程》系列文章,该系列目录如下:

  • 《不为人知的网络编程(一):浅析TCP协议中的疑难杂症(上篇)》
  • 《不为人知的网络编程(二):浅析TCP协议中的疑难杂症(下篇)》
  • 《不为人知的网络编程(三):关闭TCP连接时为什么会TIME_WAIT、CLOSE_WAIT》
  • 《不为人知的网络编程(四):深入研究分析TCP的异常关闭》
  • 《不为人知的网络编程(五):UDP的连接性和负载均衡》
  • 《不为人知的网络编程(六):深入地理解UDP协议并用好它》


关于移动端网络特性及优化手段的总结性文章请见:

  • 《现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障》


4、参考资料


TCP/IP详解 - 第11章·UDP:用户数据报协议
TCP/IP详解 - 第17章·TCP:传输控制协议
TCP/IP详解 - 第18章·TCP连接的建立与终止
TCP/IP详解 - 第21章·TCP的超时与重传
通俗易懂-深入理解TCP协议(上):理论基础
通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理
理论经典:TCP协议的3次握手与4次挥手过程详解
理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程
计算机网络通讯协议关系图(中文珍藏版)
高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少
高性能网络编程(二):上一个10年,著名的C10K并发连接问题
高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了
高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索
简述传输层协议TCP和UDP的区别
为什么QQ用的是UDP协议而不是TCP协议?
移动端即时通讯协议选择:UDP还是TCP?


5、内容概述


5.1五层模型


互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。

如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_1.png

如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三层(自下而上)分别是"链接层"(Link Layer)、"网络层"(Network Layer)和"传输层"(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。

它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。

5.2层与协议


每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。大家都遵守的规则,就叫做"协议"(protocol)。

互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

6、实体层


我们从最底下的一层开始。

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

网络编程懒人入门(一):快速理解网络通信协议(上篇)_2.png

这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

7、链接层


7.1定义


单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?

这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。

7.2以太网协议


早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

网络编程懒人入门(一):快速理解网络通信协议(上篇)_3.png

"标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。

"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

7.3MAC地址


上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

网络编程懒人入门(一):快速理解网络通信协议(上篇)_4.jpg

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

网络编程懒人入门(一):快速理解网络通信协议(上篇)_5.png

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

7.4广播


定义地址只是第一步,后面还有更多的步骤:

  • 1)首先:一块网卡怎么会知道另一块网卡的MAC地址?
    回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。
  • 2)其次:就算有了MAC地址,系统怎样才能把数据包准确送到接收方?
    回答是以太网采用了一种很"原始"的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。


网络编程懒人入门(一):快速理解网络通信协议(上篇)_6.png

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。

8、网络层


8.1网络层的由来


以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。

网络编程懒人入门(一):快速理解网络通信协议(上篇)_7.png

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。

于是,"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

8.2IP协议


规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。目前,广泛采用的是IP协议第四版,简称IPv4。
IPv4这个版本规定,网络地址由32个二进制位组成:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_8.png

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。

所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0

知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

8.3IP数据包


根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为"标头"和"数据"两个部分:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_9.png

"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_10.png

IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

8.4ARP协议


关于"网络层",还有最后一点需要说明。因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况:

  • 1)第一种情况:如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理;
  • 2)第二种情况:如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。


总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

9、传输层


9.1传输层的由来


有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

"端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

"传输层"的功能,就是建立"端口到端口"的通信。相比之下,"网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做"套接字"(socket)。有了它,就可以进行网络应用程序开发了。

9.2UDP协议


现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由"标头"和"数据"两部分组成:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_11.png


"标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_22.png

UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

9.3TCP协议


UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

10、应用层


应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。"应用层"的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。这是最高的一层,直接面对用户。它的数据就放在TCP数据包的"数据"部分。

因此,现在的以太网的数据包就变成下面这样:
网络编程懒人入门(一):快速理解网络通信协议(上篇)_33.png

11、本文小结


至此,整个互联网的五层结构,自下而上全部讲完了。这是从系统的角度,解释互联网是如何构成的。下一篇《网络编程懒人入门(二):快速理解网络通信协议(下篇)》,我反过来,从用户的角度,自上而下看看这个结构是如何发挥作用,完成一次网络数据交换的。敬请期待!

(原文链接:点此进入,有改动)

附录:更多网络编程资料


技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)
UDP中一个包的大小最大能多大?
Java新一代网络编程模型AIO原理及Linux系统AIO介绍
NIO框架入门(一):服务端基于Netty4的UDP双向通信Demo演示
NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示
NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战
NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战
P2P技术详解(一):NAT详解——详细原理、P2P简介
P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解
P2P技术详解(三):P2P技术之STUN、TURN、ICE详解
通俗易懂:快速理解P2P技术中的NAT穿透原理


本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

网络编程懒人入门(一):快速理解网络通信协议(上篇) 的相关文章

  • 对于vs份文件编写代码的一些个人见解

    先说明一下为何要将代码写在不同的文件中 xff0c 这对于初学者来说可能是多此一举的 xff0c 因为明明在一个文件中就能完成的事 xff0c 为何要在多个文件中分别写 xff0c 繁琐还容易出错 先让我们明确一个观点 xff0c 就是一个
  • 不产生新变量的情况下交换整数

    思路 xff1a 利用其中一个变量同时存储两个变量的信息 xff0c 而后利用某些运算使得可以在知道其中一个的情况下求出另外一个 具体代码如下 xff1a void exchange1 int ex1 int ex2 ex1 61 ex2
  • 如何求一个数二进制1的个数

    思路 xff1a 方法1 xff1a 可以先求二进制的样式 xff0c 再计算其中1的个数 求二进制就是不断对2除和取余 xff0c 余数组成二进制 xff0c 除的结果做下次对2除和取余 xff0c 直到数字为0 方法2 xff1a 可以
  • BLE5.0蓝牙通信原理及TI BLE协议栈在CC2642上的应用

    蓝牙可以分为经典蓝牙和低功耗蓝牙 xff0c 本文重点介绍低功耗蓝牙 xff08 BLE 一 BLE协议栈结构 以TI的CC26XX芯片为例 xff0c BLE协议栈可以由如下图所示部分组成 xff1a 1 物理层 xff1a 物理层是BL
  • RS232/RS485/CAN_BUS 通信原理总结与通信波形分析

    分析一 xff1a 232串口信号 要点 xff1a RS232 xff0c 全双工 xff0c 采用三线制传输分别为TXD RXD GND xff0c 其中TXD为发送信号 xff0c RXD为接收信号 在RS232中任何一条信号线的电压
  • SVN 拉取分支(Branch/tag)和SVN合并(Merge)

    合并 xff08 Merge xff09 例子 xff1a 把对feature branch project name v3 3 7 branch的修改合并到develop 步骤1 xff1a 如图 xff0c 右键目标文件夹 xff0c
  • 宏#define的三种基本定义方式:固定值,表达式,运算符。

    define xff1a define是C语言中的预处理命令 xff0c 预处理命令以 开头 xff0c 比如我们经常写的代码 include lt stdio h gt 也是预处理命令 define用于宏定义 xff0c 作用是方便程序段
  • 四旋翼飞行器的姿态解算小知识点

    1 惯性测量单元IMU InertialMeasurement Unit 姿态航向参考系统AHRS Attitude and Heading Reference System 地磁角速度重力MARG Magnetic Angular Rat
  • 四元数姿态解算中的地磁计融合解读

    笔者最近在做四轴 xff0c 涉及到地磁计的融合算法 xff0c 网上大多数是x IMU的融合代码 xff0c 但是这段代码对于地磁计的融合说明没有做过多的解释 xff0c 网上没有相关讨论 xff0c 仅在阿莫论坛看到一篇相关的代码解释
  • C++封装静态链接库及使用

    一 为什么要把程序封装成库 有时我们需要把自己的程序交给第三方调用 xff0c 但是又不想被别人看到自己的具体实现代码 xff0c 就封装成库给别人使用 库有动态链接库和静态链接库 xff0c 区别是动态链接库可以在程序运行时动态链接 xf
  • 四元数姿态的梯度下降法推导和解读

    笔者前面几篇文章讨论的是基于四元数的互补滤波算法 xff0c 并单独对地磁计融合部分做了详细的讨论和解释 而本文讨论的姿态融合算法叫做梯度下降法 xff0c 这部分代码可以参见Sebastian O H Madgwick在2010年4月发表
  • 四轴加速度计滤波

    加速度计滤波实验参数 xff1a 采样频率Fs 61 250Hz 截止频率Cutoff Frequency 未开电机静止 开电机悬停 未开电机转动飞控 原始输出 Raw 260 Hz 260Hz 260Hz MPU6050内部 LPF 94
  • Kalman论文笔记

    笔者前段时间阅读了一些关于Kalman的姿态论文 xff0c 本想把Kalman的知识点也整理出来发布 xff0c 无奈这编辑器不给力 xff0c 太多的公式无法复制粘贴 xff0c 图片格式上传的太复杂 xff0c 就放弃了 因此笔者只发
  • uCOS-III学习笔记

    前一段时间笔者学习uCOS III xff0c 第一次接触OS这个概念吧 下面把个人的学习笔记分享出来 xff0c 仅供参考 1 前后台系统 xff1a 后台程序是一个死循环 xff0c 也称为 任务级 xff0c 前台程序则是中断服务程序
  • 3.17 开发一个插件

    打开动态链接库 void dlopen const char filename int flag 返回一个操作句柄void Handle 61 dlopen libct so RTLD LAZY RTLD LAZY xff1a 解析动态库遇
  • 5.7 属性声明

    5 7 属性声明 主要用途 使用 attribute 来声明变量 函数的特殊属性 指导编译器来进行特定方面的优化或代码检查 使用方法 在声明后面添加 xff1a attribute ATTRIBUTE 例 xff1a int global
  • 8.18 模块设计原则:高内聚低耦合

    8 18 模块设计原则 xff1a 高内聚低耦合 模块内聚 定义 xff08 软考 xff09 块内联系 xff1a 模块内各元素的关联 交互程度 从功能角度 xff1a 自己的功能自己实现 xff0c 不麻烦其它模块 如何实现高内聚 功能
  • 9.12 中断(下):中断函数的编写

    9 12 中断 下 xff1a 中断函数的编写 中断特性 可随时打断正在执行的任务 可在任何地方打断正在执行的任务 中断返回后 xff0c CPU不一定重新执行被打断的任务 中断函数 调用时间不固定 xff1a 中断要自己保护现场 调用地点
  • 9.16 内存、外存与外设

    9 16 内存 外存与外设 按速度排列 寄存 缓存 内存 外存 存储分类 内存 又称主存 xff1a CPU能直接寻址的存储空间 存取速度快 包括 xff1a RAM ROM cache等 外存 又称辅存 xff1a 除CPU缓存和内存以外
  • 载波相位测量原理

    1 重建载波 定义 xff1a 载波调制了电文之后变成了非连续的波 xff0c 将非连续的载波信号恢复成连续的载波信号 码相关法 xff1a 方法 将所接收到的调制信号 xff08 卫星信号 xff09 与接收机产生的复制码相乘 技术要点

随机推荐

  • wpa_suplicant 详解 文章收集

    wpa suplicant 详解 文章收集 参考资料 https w1 fi wpa supplicant devel index html https zhuanlan zhihu com p 24246712 https www cnb
  • 玩转AOSP源码编译

    整理搬运一下大佬的文章 https www bilibili com video BV19f4y1r7E6 http liuwangshu cn batcoder aosp 3 compiling aosp html 1 前言 1 1 re
  • Qt 64位链接 mysql8.0 中出现的问题及其解决办法

    1 driver not loaded 原因总结 MinGW编译器中找不到 MySql驱动或者驱动位数不对MinGW编译器找不到 MySql动态库或者动态库有问题代码写的有问题 https blog csdn net l0p0c artic
  • Linux man 手册中各种括号的含义

    尖括号 lt gt 一般用于表示必选项或者参数的占位符 xff0c 实际使用时需要替换成具体的值 方括号 一般用于表示可选项或者参数的占位符 xff0c 实际使用时可以选择是否包含该选项或者参数 大括号 一般用于表示一组选项或者参数 xff
  • 批量创建 markdown 文件的脚本

    写一个 dos脚本 xff0c 其功能是创建 36 个 以 34 Linux内核编程 ch11 sec 34 为开头的 Markdown格式的文件 64 echo off chcp 65001 setlocal enabledelayede
  • libcurl库的http get和http post使用

    一 libcurl中的http get使用方法 1 为什么要使用libcurl 1 作为http的客户端 xff0c 可以直接用socket连接服务器 xff0c 然后对到的数据进行http解析 xff0c 但要分析协议头 xff0c 实现
  • Postman查看完整的请求报文

    第一步 工具栏 View gt Show postman console 第二步 点击 Show Postman Console 之后 就会弹出一个如下图所示的界面 小窍门 postman可以把请求的参数生成代码 可以在代码使用 仅仅只需点
  • 通用异步接收器/发送器(UART)——发送与接收

    图1 带数据总线的UART UART代表通用异步接收器 发送器 它不是像SPI和I2C这样的通信协议 xff0c 而是微控制器中的物理电路或独立的IC UART的主要目的是发送和接收串行数据 关于UART最好的一点是其仅使用两条线在设备之间
  • MYSQL导入数据出现Error 1290:The MySQL server is running with the --secure-file-priv option so it cannot ex

    最近在学习MySQL xff0c 刚入门 xff0c 在导入数据的时候出现了Error 1290 xff1a The MySQL server is running with the secure file priv option so i
  • openmv--无人机通过mavlink实现apriltag定点降落

    span class token comment 无人机通过mavlink实现apriltag定点降落例程 span span class token comment span span class token comment 这个脚本使用
  • [转] 用WWW-Authenticate实现登录验证

    用WWW Authenticate实现登录验证 文章来源 xff1a http www keakon cn bbs thread 1989 1 1 html 今天在研究HTTP协议时发现一个叫WWW Authenticate的头字段 xff
  • ROS--坐标理解

    北东地坐标系 NED north east down 东北天 ENU east north up 机体坐标系 body frame 载体坐标系 是以载体为中心 xff0c 主要作用是处理与传感器直接测得的物理量 导航坐标系 可以是地固坐标系
  • qt 编译qgc常见问题

    qt LINK warning LNK4098 默认库 MSVCRT 与其他库的使用冲突 xff1b 请使用 NODEFAU 如果以前没有问题 xff0c 突然出现的这个问题 xff0c 绝大可能是中间编译过程太多造成的 清理项目 重新构建
  • VINS-FUSION-GPU在jetson nx上的实现

    需要安装经过修改的Ubuntu18系统 https span class token operator span span class token comment developer nvidia com zh cn embedded do
  • 主机ping通虚拟机,虚拟机ping通主机解决方法(NAT模式)

    主机ping通虚拟机 xff0c 虚拟机ping通主机解决方法 xff08 NAT模式 xff09 有时候需要用虚拟机和宿主机模拟做数据交互 xff0c ping不通是件很烦人的事 xff0c 本文以net模式解决这一问题 宿主机系统 xf
  • 一个基于Matlab的简单Gui设计

    前几日浩子说要编一个基于Matlab的用户图像界面 xff0c 他用GUIDE搭了一个大概的框架 xff0c 大概要实现数据读入 做图分析 图像清除 关闭界面的功能 xff0c 我用函数形式给改编了一个 xff0c 虽然问题比较简单 xff
  • 关于N步相移中相位噪声仿真分析的一点说明

    在条纹投影的三维测量中 xff0c 有这么一个经典的结论 xff1a 假设光强的噪声为方差为 2 xff0c 那么 xff0c 经过N步标准相移求得的相位的方差为2 2 N B 2 xff08 xff09 xff0c 其中 xff0c B为
  • 如何给MFC对话框添加背景图片

    一 创建项目 文件 新建项目 MFC应用程序 该页面使用 基于对话框 完成即可 注意 取消 使用Unicode库 否则在使用AfxMessageBox会报错 xff0c 没有一个可以转换的参数类型 xff0c 要加AfxMessageBox
  • 如何检测应用程序调用了哪些DLL文件?

    之前所用的检测工具是Dllshow xff0c 后来突然不能用了 xff0c VS以前有Depends xff0c 后来高级版本也没了 最近找到一种简单方便的方法 xff0c 利用windowsx系统自带的功能 运行你想知道的应用程序 xf
  • 网络编程懒人入门(一):快速理解网络通信协议(上篇)

    1 写在前面 论坛和群里常会有技术同行打算自已开发IM或者消息推送系统 xff0c 很多时候连基本的网络编程理论 xff08 如网络协议等 xff09 都不了解 xff0c 就贸然定方案 写代码 xff0c 显得非常盲目且充满技术风险 即时