GNSS增强定位技术发展与星地融合应用

2023-05-16

引言:你能想象吗?除了手机和汽车,现在连安全帽、道路锥筒,甚至跑鞋都需要定位。随着移动物联网的快速发展,国民经济各个领域都对更高精度的定位能力产生迫切需求。同时,市场也要求这类服务变得更低成本、更加可靠。

近日,一篇题为《An equivalent transition SSR2OSR method between PPP-AR and RTK using RTCM-SSR》的论文,获得第十届卫星导航年会青年论文一等奖。这篇论文探讨的正是在大众市场对高精度定位应用需求不断增强的前提下,低成本的精准定位技术如何发展变化。以下为根据论文内容编译的中文梗概版:

大众需求驱动低成本技术不断革新

在这里插入图片描述
▴低成本设备高精度定位应用背景

伴随着全球导航卫星系统(GNSS)的发展,其应用范围逐渐扩大,几乎涉及了国民经济的所有领域,包括与普通消费者相关的大众市场。不同于传统的测量测绘等行业市场应用,大众市场的应用往往伴随着更复杂的观测环境,如多路径干扰,频繁周跳等,其GNSS数据处理策略一定程度上也决定了位置、速度、时间以及大气延迟等信息的获取频率和精度。随着大众市场对高精度定位需求的增长,迫切要求低成本精密定位技术进行技术革新。现阶段,单独依赖GNSS设备本身的定位性能并不能满足厘米级高精度定位和完好性的需求,需要各类增强系统(服务)提升其性能。

增强系统的类型有很多,例如差分系统、局域增强系统、地基增强系统、广域增强系统、星基增强系统、传感器增强系统等。从技术角度,增强服务可以分为两大类即观测域(OSR)增强服务和状态空间域(SSR)增强服务,其中,差分系统、局域增强系统和地基增强系统属于观测域增强服务,广域增强系统和星基增强系统属于状态空间域增强服务,而传感器增强实质上是一种间接的OSR增强服务。

在增强系统的建设方面,国际上的主要地基增强系统包括以国际导航卫星服务组织运营的全球IGS站点网为代表的全球地基增强系统和以欧洲永久性连续运行网(EPN)为代表的洲际地基增强系统。其中,IGS全称为International GNSS Service,自1994年成立以来一直为各个行业提供公开的、高质量的GNSS数据产品,目前,IGS全球共有超过400个以上的永久连续运行GNSS基准站点,可实时采集包括GPS、GLONASS、Galileo、北斗、QZSS和SBAS信号。除IGS等国际组织以外,美国、日本、德国、英国、加拿大、澳大利亚等国也建立了各自的国家级地基增强系统,为空间大气环境监测、高精度定位、导航、地球框架维护等研究提供数据支持。在我国,千寻位置自2015年8月成立以来,建设完成了由遍布全国的超过2200个地基增强站组成的“全国一张网”,在全国大部分地区,为各类终端提供7×24小时高精度定位服务。

目前GNSS增强技术有哪些瓶颈?

当前,针对GNSS增强技术而言,网络 RTK(Network Real-time Kinematic) 技术和PPP(Precise Point Positioning)技术最具有代表性。

网络RTK技术在服务端利用载波差分技术原理,通过在区域内布设一定范围的基准站,利用基准站实时数据网络求解基线模糊度,建立区域大气误差模型,基于用户位置向用户实时播发虚拟站的修正观测信息OSR(Observation Space Representation),为覆盖范围区域内的所有用户提供稳定等精度的OSR增强服务。对于终端用户,利用短基线RTK技术,消除如卫星轨道误差、卫星钟误差、电离层延迟、对流层延迟等误差项,实现载波模糊度的快速整数固定,实现厘米级高精度定位。网络RTK技术大部分基于双差观测模型,随着基线长度的增长,模糊度的固定成功率受大气误差影响明显而逐渐降低,且需要建立用户和数据中心的通讯链路,当用户存在较大的距离变化时,存在播发主站切换的情况,造成模糊度结果出现变化。
在这里插入图片描述
▴NRTK定位技术

PPP技术1997年由J. F. Zumberge等人首次提出,使用单站观测值即可实现毫米级高精度定位,Gerhard Wabbena提出了SSR模型处理方法。PPP技术在服务端主要利用全球或区域基准站点,对卫星轨道、钟差、载波伪距偏差产品进行实时估计,并利用区域站点生成区域大气增强信息,通过互联网链路或卫星链路播发给终端用户。对于终端用户,接收实时高精度卫星精密产品、实现轨道、钟差、载波伪距偏差等参数的高精度修正,单站实现高精度定位。总的来说,PPP技术的发展主要可归纳为三个方向:

1)多频多星座的发展,从单一的GPS双频到多频多系统,从无电离层组合模型到非差非组合模型的逐渐演进过程,同时伴随着包括如频间偏差估计,多星座系统间偏差的处理等关键技术细节的处理,发掘观测误差本身的溯源,终端利用多星座多频段数据提供更多冗余观测值,以期解决如多路径效应,收敛时间等问题;

2)非差整数模糊度固定技术的发展,用于提高PPP的定位精度和收敛时间稳定性方面,相关代表性学者论文包括UPD估计和PPP-AR方法、去耦合钟方法、整数相位种等,旨在恢复非差模糊度的整数特性本质,通过在服务端分离/融合模糊度小数部分,实现终端的非差模糊度达到双差模糊度固定的效果;

3)大气产品的生成和使用,用于减少初始PPP收敛时间及避免PPP中断重收敛,服务端利用区域站点实时生成大气增强产品,利用先验大气增加观测方程数量,减少PPP模型本身的病态特征。当前阶段,PPP技术由于其观测模型秩亏问题,仍然需要长时间的收敛时间,且要求用户需采用与服务端相一致的误差模型,计算较为复杂,在低成本设备的定位应用上,受限于低成本设备的观测数据质量,频繁的周跳及更为严重的多路径干扰使得低成本定位的连续性和可靠性仍存在一定的瓶颈。
在这里插入图片描述
▴PPP定位技术

千寻位置的探索:星地融合增强算法

2018年5月16日,千寻位置正式发布了天音计划——“星地一体高精度时空服务”。利用国家北斗地基增强系统“全国一张网”及千寻位置的海外地基增强站点,实现基于地球同步轨道卫星和互联网的双路GNSS的SSR改正参数播发,为用户提供高精度、高可靠、实时无缝的高精度时空服务,用于满足智能物联网时代对于无缝、连续、安全可靠的精准定位和复杂时间协同的需求,以发挥GNSS定位增强在自动驾驶、无人机等涉及用户人身和生产安全的应用场景中的重要价值,赋能全球智能物联网应用产业生态。

星地融合增强算法采用NRTK和PPP技术融合处理方法,利用星基SSR信息,可实现在终端或服务端等价变换为常规RTK用户可使用的OSR观测信息,终端用户采用常规RTK模式即可实现高精度定位,避免终端和服务端非差误差模型不统一造成的计算误差,减低终端计算量负荷;与此同时,由于转换得到的OSR观测值具有统一的模糊度基准,因此,在主站切换及卫星失锁等条件下无周跳产生,并在无网络场景下,支持RTK模式平滑切换到PPP模式,满足一些特殊场景的连续性定位要求。
在这里插入图片描述
▴星地融合定位技术发展

基于星地融合技术,高精定位效果更佳

实验测试采用一组基于高速开阔环境的低成本GNSS数据车载动态实测数据,全程约50km,并利用RTK+INS作为定位结果基准真值,验证采用基于千寻位置SSR星基增强信息的星地融合算法的定位固定效果和精度差异。其中绿色为车载运动轨迹,蓝色为周边千寻位置基准站点位置,红色为对应时段生成的虚拟观测站位置。
在这里插入图片描述
▴车载运动轨迹

路测数据利用千寻位置SSR星基增强信息共生成4个网格点位置OSR0~0SR3数据,终端算法采用千寻位置自研车载终端RTK定位算法,全程采用单GPS系统定位,以后处理PPK+INS结果作为坐标真值基准。

在这里插入图片描述
▴全程车载定位精度结果:红色为三维定位误差,绿色为平面误差定位结果。

上图显示的数据结果中,基于千寻位置SSR星基增强信息可实现传统RTK终端的实时高精度定位,开阔环境可保证平面精度优于5cm,全程精度统计结果见下图。
在这里插入图片描述
▴星地融合算法在车载RTK终端的精度和固定率统计

图片中的数据结果验证了采用SSR信息及星地融合算法可得到车载全程数据固定率优于99%,CEP99三维误差优于0.11米,且模糊度基准统一,在主站切换的跨网时刻模糊度无需进行重新估计解算。

在这里插入图片描述
▴车载RTK算法终端模糊度结果:跨网OSR0到OSR1时刻模糊度不变

结 论

千寻位置利用遍布全国的北斗地基增强站的国家北斗地基增强系统和全球海外地基增强站点,现阶段已实现了基于NRTK技术的实时高密度大区域网格的参考服务(Realtime Ultra-Dense Mega Spatial Grid Reference services,RUMSGR)以及基于PPP技术的SSR改正参数稳定播发,为低成本设备的高精度定位应用提供平台应用基础。

基于星地融合方法的技术创新为高精度定位提供了新的技术理论参考,实现将用户端的PPP解算模式转换成等效的RTK解算模式,达到等同于网络RTK的定位效果,以满足大众市场对终端设备的低成本,高可靠性,快速收敛等复杂场景的定位需要。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

GNSS增强定位技术发展与星地融合应用 的相关文章

随机推荐

  • C语言之带参数的宏

    这两天在学习C语言 xff0c 发现宏定义挺有意思 xff0c 可以减少代码量 带参宏定义 的一般形式为 define 宏 名 形参表 字符串 带参宏调用 的一般形式为 xff1a 宏 名 实参表 xff1b define M X Y X
  • visual studio升级

    visual studio升级 概述升级步骤温馨提示 概述 有时处于开发要求或者安全要求 xff0c 需要将visual studio升级到最新的版本 本篇文章记录一下如何升级 升级步骤 1 找到visual studio的安装路径下的安装
  • STL中那些好用的东西!(持续更新)

    一 数据结构部分 1 set amp map xff08 后续持续更新 xff09 2 queue xff08 priority queue xff09 queue lt int gt a 定义 a push i 压入 a pop 弹出 a
  • 工业机器人虚拟仿真设计

  • HTTP详解

    一 什么是HTTP xff1f HTTP xff08 HyperText Transfer Protocol xff0c 超文本传输协议 xff09 是一个简单的请求 响应协议 xff0c 它通常运行在TCP之上 xff08 应用层 xff
  • android练习之为 TextView 添加监听器 ,添加后退按钮 ,从按钮到图标按钮

    为 TextView 添加监听器 NEXT按钮不错 xff0c 但如果用户单击应用的TextView文字区域 xff08 地理知识问题 xff09 xff0c 也可以跳转 到下一道题 xff0c 用户体验会更好 添加后退按钮 为GeoQui
  • ORA-01918: 用户 'SCOTT' 不存在 解决方法

    SQL gt alter user scott account unlock alter user scott account unlock 第 1 行出现错误 ORA 01918 用户 SCOTT 不存在 找到scott sql 文件 S
  • idea 里form表单action提交servlet文件出现报错

    由于在action的字符串中加了空格 xff0c 导致于于url pattern不匹配 xff0c 所以报错
  • 数据结构——二维数组

    二维数组可以理解为数组的数组 二维数组组织为矩阵 xff0c 可以表示为行和列的集合 但是 xff0c 创建二维数组以实现关系数据库外观相似的数据结构 它提供了一次容纳大量数据的便利性 xff0c 可以在任何需要的地方传递给任意数量的功能
  • 数据结构——链表

    链表是一种随机存储在内存中的节点的对象集 节点包括两个字段 xff0c 即存储在该地址的数据和包含下一节点地址的指针 链表的最后一个节点包含指向null的指针 1 链表的用途 链表不需要连续存在于存储器中 节点可以是存储器中任何位置并链接在
  • 多线程学习笔记--第一章 多线程技能(1)

    1 什么是进程 xff1f 进程是操作系统结构的基础 xff0c 是一次程序的执行 xff1b 是一个程序及其数据在处理机上顺序执行时所发生的活动 xff1b 是程序在一个数据集合上运行的过程 xff0c 它是系统进行资源分配和调度的一个独
  • 多线程学习笔记--第一章 多线程技能(2)

    1 currentThread方法 该方法返回代码段正在被哪个线程调用的信息 2 isAlive方法 判断当前线程是否处于活动状态 活动状态是线程已经启动且尚未终止 线程处于运行或准备开始运行的状态 如果将线程对象以构造参数的方式传递给Th
  • Qt编程过程中若给定一些数,把它们四舍五入后,保留两位小数

    double类型的数进行四舍五入后保留两位小数 场景实现方式方法一 方法二总结 场景 开发的过程中需要显示一些double类型的数 xff0c 但是又不能直接显示 xff0c 需要四舍五入之后保留两位小数 如 xff1a 0 124567
  • C语言中,头文件、源文件和库文件的关系(转)

    初学c xff0c 一直搞不懂几个概念 xff0c 偶然看到一篇比较好的文章 xff0c 转载一下 xff0c 原文https blog csdn net xhbxhbsq article details 78955216 一下是原文内容
  • 串口是怎样传输数据的

    概述 通过逻辑分析仪捕捉串口传输的数据来了解串口传输数据的实质 串行接口简称为串口 xff0c 串行接口 xff08 Serial Interface xff09 是指数据一位一位地顺序传送 实现双向通信就需要一对传输线 xff0c 即TX
  • 精准时空:让人工智能更智能

    如今科技界 产业界最热门的关键词是什么 xff1f 各地方政府给出了明确的答案 人工智能 8月的最后一周 xff0c 重庆 上海两大直辖市 xff0c 争先恐后地举办了以智能为主题的大会 精准时空能力 xff0c 作为机器智能的基础数据 x
  • 关于FindCM厘米级定位,这6个问题的答案你需要知道

    面对越来越复杂的应用场景 xff0c 单一的FindCM xff08 千寻知寸 xff09 产品 xff0c 已经无法满足不同行业客户的差异化需求 近日 xff0c 千寻位置完成FindCM产品分级 xff0c 推出了面向不同行业和应用场景
  • 千寻位置如何满足自动驾驶“刚需”

    自动驾驶 xff0c 本质是汽车产业的升级 自动驾驶技术在5G 人工智能和汽车行业的飞速发展下 xff0c 成为业界焦点 目前 xff0c 通用 一汽 广汽 北汽 吉利 长安等国内外主流车企都在进行自动驾驶技术研发 xff0c 而他们正在使
  • 自动驾驶汽车为什么需要高精度定位?干货都在这里

    2019年5月7日 xff0c 曾作为主PM驱动凯迪拉克 Jeep全系 福特全系车型Sync3导航产品研发 xff0c 现任千寻位置车端高精度定位解决方案经理的宋子未 xff0c 讲授了主题为 自动驾驶汽车为什么需要高精度定位 xff1f
  • GNSS增强定位技术发展与星地融合应用

    引言 xff1a 你能想象吗 xff1f 除了手机和汽车 xff0c 现在连安全帽 道路锥筒 xff0c 甚至跑鞋都需要定位 随着移动物联网的快速发展 xff0c 国民经济各个领域都对更高精度的定位能力产生迫切需求 同时 xff0c 市场也