C++11异步操作future和aysnc 、function和bind

2023-05-16

C++11异步操作future和aysnc、function和bind

  • 前言
  • 异步操作
    • std::future和std::aysnc 介绍
    • std::future和std::aysnc的使用Demo
    • std::packaged_task 介绍
    • std::packaged_task的使用Demo
    • std::promise 的介绍
    • std::promise的使用Demo
  • function和bind
    • function的用法
    • bind的用法

前言

  本文介绍异步操作future和aysnc 与 function和bind

  本专栏知识点是通过零声教育的线上课学习,进行梳理总结写下文章,对c/c++linux课程感兴趣的读者,可以点击链接 C/C++后台高级服务器课程介绍 详细查看课程的服务。

异步操作

C++11为异步操作提供了4个接口

  • std::future : 异步指向某个任务,然后通过future特性去获取任务函数的返回结果。
  • std::aysnc: 异步运行某个任务函数。
  • std::packaged_task :将任务和feature绑定在一起的模板,是一种封装对任务的封装。
  • std::promise:承诺

std::future和std::aysnc 介绍

  std::future期待一个函数的返回值,从一个异步调用的角度来说,future更像是执行函数的返回值,C++标准库使用std::future为一次性事件建模,如果一个事件需要等待特定的一次性事件,那么这线程可以获取个future对象来代表这个事件。

  异步调用往往不知道何时返回,但是如果异步调用的过程需要同步,或者说后一个异步调用需要使用前一个异步调用的结果。这个时候就要用到future。也就是说,可选择同步,也可选择异步。

  future的表现为期望,当前线程持有future时,期望从future获取到想要的结果和返回,可以把future当做异步函数的返回值。

  线程可以周期性的在这个future上等待一小段时间,检查future是否已经ready,如果没有,该线程可以先去做另一个任务,一旦future就绪,该future就无法复位(无法再次使用这个future等待这个事件),所以future代表的是一次性事件。

  在库的头文件中声明了两种future,唯一future(std::future)和共享future(std::shared_future)这两个是参照std::unique_ptr和std::shared_ptr设立的,前者的实例是仅有的一个指向其关联事件的实例,而后者可以有多个实例指向同一个关联事件,当事件就绪时,所有指向同一事件的std::shared_future实例会变成就绪。

  跟thread类似,async允许你通过将额外的参数添加到调用中,来将附加参数传递给函数。如果传入的函数指针是某个类的成员函数,则还需要将类对象指针传入(直接传入,传入指针,或者是std::ref封装)。

  默认情况下,std::async是否启动一个新线程,或者在等待future时,任务是否同步运行都取决于你给的参数。这个参数为std::launch类型,async运行某个任务函数,至于异步运行还是同步运行,由这个参数决定

  默认选项参数被设置为std::launch::any。如果函数被延迟运行可能永远都不会运行,因为很有可能对应的future没有调用get。

enum class launch{
	async,deferred,sync=deferred,any=async|deferred
};
  • std::launch::async,表明函数会在创建的新线程上运行。
  • std::launch::defered表明该函数会被延迟调用,直到在future上调用get()或者wait()为止。
  • std::launch::sync = std::launch::defered,表明该函数会被延迟调用
  • std::launch::any = std::launch::defered | std::launch::async,表明该函数会被延迟调用,调用时在新线程上运行。

std::future和std::aysnc的使用Demo

  这里我们future了两个函数,第一个函数设置为异步,那么在第20行之后,就会创建一个新线程并运行,而不必等待result.get()。第二个函数没有设置参数,那么默认是延迟调用,只有在result2.get()时,才会创建一个新线程并运行。

#include <iostream>
#include <future>
#include <thread>
using namespace std;
int find_result_to_add() {
	//std::this_thread::sleep_for(std::chrono::seconds(2)); // 用来测试异步延迟的影响
	std::cout << "find_result_to_add" << std::endl;
	return 1 + 1;
}
int find_result_to_add2(int a, int b) {
	//std::this_thread::sleep_for(std::chrono::seconds(5)); // 用来测试异步延迟的影响
	return a + b;
}
void do_other_things() {
	std::cout << "do_other_things" << std::endl;
	std::this_thread::sleep_for(std::chrono::seconds(5));
}
int main() {
	//async异步 
	std::future<int> result = std::async(std::launch::async,find_result_to_add);
	//std::future<decltype (find_result_to_add())> result = std::async(find_result_to_add);
	//auto result = std::async(find_result_to_add); // 推荐的写法用aoto 

	do_other_things();

	std::cout << "result: " << result.get() << std::endl; // 延迟是否有影响?

	//std::future<decltype (find_result_to_add2(0, 0))> result2 = std::async(find_result_to_add2, 10, 20);
	//不写默认any 
	auto result2=std::async(find_result_to_add2, 10, 20);

	std::cout << "result2: " << result2.get() << std::endl; // 延迟是否有影响?

	std::cout << "main finish" << endl;
	return 0;
}

std::packaged_task 介绍

  如果说std::async和std::feature还是分开看的关系的话,那么std::packaged_task就是将任务和feature绑定在一起的模板,是一种封装对任务的封装。

The class template std::packaged_task wraps any Callable target (function, lambda expression,
bind expression, or another function object) so that it can be invoked asynchronously. Its return
value or exception thrown is stored in a shared state which can be accessed through std::future
objects.

  可以通过std::packaged_task对象获取任务相关联的feature,调用get_future()方法可以获得std::packaged_task对象绑定的函数的返回值类型的future。std::packaged_task的模板参数是函数签名。( 例如int add(int a, intb)的函数签名就是int(int, int) )

std::packaged_task的使用Demo

#include <iostream>
#include <future>
using namespace std;
int add(int a, int b, int c) {
	std::cout << "call add\n";
	return a + b + c;
}
void do_other_things() {
	std::cout << "do_other_things" << std::endl;
}
int main() {
	std::packaged_task<int(int, int, int)> task(add); // 封装任务
	do_other_things();
	std::future<int> result = task.get_future();
	task(1, 1, 2); //必须要让任务执行,否则在get()获取future的值时会一直阻塞
	std::cout << "result:" << result.get() << std::endl;
	return 0;
}

std::promise 的介绍

  std::promise提供了一种设置值的方式,它可以在这之后通过相关联的std::future对象进行读取。换种说法,之前已经说过std::future可以读取一个异步函数的返回值了,那么这个std::promise就提供一种方式手动让future就绪

  出在promise创建好的时候future也已经创建好了,线程在创建promise的同时会获得一个future,然后将promise传递给设置他的线程,当前线程则持有future,以便随时检查是否可以取值。

  promise是一个承诺,当线程创建了promise对象后,这个promise对象向线程承诺他必定会被人设置一个值,和promise相关联的future就是获取其返回的手段。

std::promise的使用Demo

#include <future>
#include <string>
#include <thread>
#include <iostream>
using namespace std;
void print(std::promise<std::string>& p) {
	p.set_value("There is the result whitch you want.");
}
void do_some_other_things() {
	std::cout << "Hello World" << std::endl;
}
int main() {
	std::promise<std::string> promise;
	std::future<std::string> result = promise.get_future();
	
	std::thread th(print, std::ref(promise));
	
	do_some_other_things();
	std::cout << result.get() << std::endl;
	
	th.join();
	return 0;
}

function和bind

  在设计回调函数的时候,无可避免地会接触到可回调对象。在C++11中,提供了std::function和std::bind两个方法来对可回调对象进行统一和封装。(回调函数就是一个被作为参数传递的函数)

  C++语言中有几种可调用对象:函数、函数指针、lambda表达式、bind创建的对象以及重载了函数调用运算符的类。和其他对象一样,可调用对象也有类型。例如,每个lambda有它自己唯一的(未命名)类类型;函数及函数指针的类型则由其返回值类型和实参类型决定。

function的用法

头文件:#include <functional>

  1. 保存普通函数
//保存普通函数
void func1(int a) {
	cout << a << endl;
}
//1. 保存普通函数
std::function<void(int a)> func1_;
func1_ = func1;
func1_(2); //2
  1. 保存lambda表达式
//2. 保存lambda表达式
std::function<void()> func2_ = []() {
	cout << "hello lambda" << endl;
};
func2_(); //hello world
  1. 保存成员函数
//保存成员函数
class A {
	public:
		A(string name) : name_(name) {}
		void func3(int i) const {
			cout <<name_ << ", " << i << endl;
		}
	private:
		string name_;
};

//3 保存成员函数
	std::function<void(const A&,int)> func3_ = &A::func3;
	A a("wxf");
	func3_(a, 20);

完整代码

#include <iostream>
#include <functional>
using namespace std;
//保存普通函数
void func1(int a) {
	cout << a << endl;
}
//保存成员函数
class A {
	public:
		A(string name) : name_(name) {}
		void func3(int i) const {
			cout <<name_ << ", " << i << endl;
		}
	private:
		string name_;
};
int main() {
	cout << "main1 -----------------" << endl;
	//1. 保存普通函数
	std::function<void(int a)> func1_;
	func1_ = func1;
	func1_(2); //2
	
	cout << "\n\nmain2 -----------------" << endl;
	//2. 保存lambda表达式
	std::function<void()> func2_ = []() {
		cout << "hello lambda" << endl;
	};
	func2_(); //hello world
	
	cout << "\n\nmain3 -----------------" << endl;
	//3 保存成员函数
	std::function<void(const A&,int)> func3_ = &A::func3;
	A a("wxf");
	func3_(a, 20);
	return 0;
}
main1 -----------------
2


main2 -----------------
hello lambda


main3 -----------------
wxf, 20

bind的用法

  可将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对象来“适应”原对象的参数列表。调用bind的一般形式:auto newCallable = bind(callable, arg_list);

  其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的callable的参数。即,当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数。

  arg_list中的参数可能包含形如placeholders::_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置:placeholders::_1为newCallable的第一个参数,placeholders::_2为第二个参数,以此类推。

  可能看描述还不是很懂,下面来看看代码

#include <iostream>
#include <functional>
using namespace std;

void fun_1(int x,int y,int z) {
	cout<<"fun_1 print unchanged: x=" <<x<<",y="<< y << ",z=" <<z<<endl;
}
void fun_2(int &a,int &b) {
	a++;
	b++;
	cout<<"fun_2 print Increment: a=" <<a<<",b="<<b<<endl;
}
class A {
	public:
		// 重载fun_3,主要bind的时候需要
		// std::bind((void(A::*)(int, int))&A::fun_3
		void fun_3(int k,int m) {
			cout << "fun_3 a = " << a << cout <<"\t print unchanged: k="<<k<<",m="<<m<<endl;
		}
		// std::bind((void(A::*)(string))&A::fun_3
		void fun_3(string str) {
			cout<<"fun_3 print: str="<<str<<endl;
		}
		int a;
};


int main() {
	//f1的类型为 function<void(int, int, int)>
	cout << "\n\nstd::bind(fun_1, 1, 2, 3) -----------------\n";
	auto f1 = std::bind(fun_1, 1, 2, 3); //表示绑定函数 fun 的第一,二,三个参数值为:1 2 3
	f1(); //print: x=1,y=2,z=3
	
	cout << "\n\nstd::bind(fun_1, 10, 20, 30) -----------------\n";
	auto f1_1 = std::bind(fun_1, 10, 20, 30); //表示绑定函数 fun 的第一,二,三个参数值为: 1 2 3
	f1_1();
	
	cout << "\n\nstd::bind(fun_1, placeholders::_1,placeholders::_2, 3) -----------------\n";
	auto f2 = std::bind(fun_1, placeholders::_1, placeholders::_2, 3);
	//表示绑定函数 fun_1的第三个参数为 3,而fun_1的第一,二个参数分别由调用 f2 的第一,二个参数指定
	f2(1,2);//print: x=1,y=2,z=3
	f2(10,21,30); // 传入30也没有用
	
	cout << "\n\nstd::bind(fun_1,placeholders::_2,placeholders::_1,3) -----------------\n";
	auto f3 = std::bind(fun_1,placeholders::_2,placeholders::_1,3);
	//表示绑定函数 fun_1 的第三个参数为 3,而fun_1的第一,二个参数分别由调用 f3 的第二,一个参数指定
	//注意: f2 和 f3 的区别。
	f3(1,2);//print: x=2,y=1,z=3
	
	cout << "\n\nstd::bind(fun_2, placeholders::_1, n) -----------------\n";
	int m = 2;
	int n = 3;
	表示绑定fun_2的第一个参数为n, fun_2的第二个参数由调用f4的第一个参数(_1)指定。
	auto f4 = std::bind(fun_2, placeholders::_1, n); //func_2(3,<f4_1>)
	f4(m); //print: m=3,n=4
	cout<<"m="<<m<<endl;//m=3 说明:bind对于不事先绑定的参数,通过std::placeholders传递的参数是通过引用传递的,如m
	cout<<"n="<<n<<endl;//n=3 说明:bind对于预先绑定的函数参数是通过值传递的,如n

	cout << "\n\nstd::bind(&A::fun_3,&a1,40,50) -----------------\n";
	A a;
	a.a = 10;
	//f5的类型为 function<void(int, int)>
	auto f5 = std::bind((void(A::*)(int, int))A::fun_3, &a, 40, 50); 
	f5(10,20);//参数以及写死,传参没用 
	
	cout << "\n\nstd::bind(&A::fun_3, &a2,placeholders::_1,placeholders::_2) -----------------\n";
	A a2;
	a2.a = 20;
	//f5的类型为 function<void(int, int)>
	auto f6 = std::bind((void(A::*)(int, int))&A::fun_3,&a2,placeholders::_1,placeholders::_2); //使用auto关键字
	f6(10,20);//调用a.fun_3(10,20),print: k=10,m=20
	
	cout << "\n\nstd::bind(&A::fun_3,a3,std::placeholders::_1,std::placeholders::_2) -----------------\n";
	std::function<void(int,int)> fc = std::bind((void(A::*)(int,int))&A::fun_3, &a,std::placeholders::_1,std::placeholders::_2);
	fc(10,20); //调用a.fun_3(10,20) print: k=10,m=20
	fc = std::bind((void(A::*)(int, int))&A::fun_3,&a2,std::placeholders::_1,std::placeholders::_2);
	
	cout << "\n\nstd::bind(&A::fun_3,&a1,std::placeholders::_1) -----------------\n";
	auto f_str = std::bind((void(A::*)(string))&A::fun_3,a,std::placeholders::_1);
	f_str("wxf");
	
	return 0;
}

在这里插入图片描述

在这里插入图片描述

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C++11异步操作future和aysnc 、function和bind 的相关文章

随机推荐

  • Windows电脑把蓝牙耳机识别成未知设备怎么办?(无法识别蓝牙耳机)

    首先打开蓝牙设置转到 设备与打印机 你会看到被识别为未知设备的耳机出现在这里 右击它 xff0c 点击属性 xff0c 切换到服务选项卡 耳机的话把这个勾选 xff0c 如果是其他蓝牙设备则根据情况勾选 点击确定 然后关掉再打开蓝牙 xff
  • C++ 笔面试知识点大全 附超详细解析 【持续更新中】 (校招/实习/大厂/笔试/面试)

    目录 关键字autodecltypeconststaticexternexplicitvolatileinline Lambda表达式顶层const和底层const类型转换多态 xff0c 虚函数 xff0c 隐藏和重写虚函数的实现机制 x
  • Unity Shader:光照模型,纹理,详细注释

    Phong光照模型 进入摄像机的光线分为四个部分 环境光 xff08 ambient xff09 其他所有间接光照 自发光 xff08 emissive xff09 给定一个方向 xff0c 模型表面本身向该方向发射多少辐射量 漫反射 xf
  • 算法与数据结构 面试知识点大全【持续更新中】(校招/社招/实习/大厂/面试)

    文章目录 排序算法1 冒泡排序2 插入排序3 归并排序4 快速排序5 选择排序 二分搜索1 数组中第k大的数字2 875 爱吃香蕉的珂珂 力扣 xff08 LeetCode xff09 https leetcode cn problems
  • 堆栈

    栈是一种执行 后进先出 算法的数据结构 设想有一个直径不大 一端开口一端封闭的竹筒 有若干个写有编号的小球 xff0c 小球的直径比竹筒的直径略小 现在把不同编号的小球放到竹筒里面 xff0c 可以发现一种规律 xff1a 先放进去的小球只
  • 大端小端和C实现大小端字节序的转化

    大端小端 小端就是低位字节放在内存的低地址端 xff0c 高位字节放在内存的高地址端 大端就是高位字节放在内存的低地址端 xff0c 低位字节放在内存的高地址端 举一个例子 xff0c 比如数字0x12 34 56 78 xff08 注意7
  • 【计算机图形学/实时渲染】 阴影(GAMES202)

    阴影 对于静态的物体 xff0c 可以使用Lightmap烘焙的方法来获取物体的影子 xff08 静态阴影 xff09 xff0c 而对于动态的物体 xff0c 一般采用的是Shadowmap的技术 光照贴图 xff08 Lightmap
  • 解决Mingw-w64下载太慢问题

    官网下载太慢了 xff0c 我们只用换一个镜像源就可以 1 点击Problems Downloading 2 切换香港的
  • 嵌入式Linux开发8——UART串口通讯

    1 背景知识 1 1 UART通讯格式 串口全称叫做串行接口 xff0c 通常也叫做 COM 接口 xff0c 串行接口指的是数据一个一个的顺序传输 xff0c 通信线路简单 使用两条线即可实现双向通信 xff0c 一条用于发送 xff0c
  • 二叉树笔记

    二叉树 二叉搜索 xff08 排序 查找 xff09 树 二叉查找树 xff08 Binary Search Tree xff09 xff0c xff08 又 xff1a 二叉搜索树 xff0c 二叉排序树 xff09 它或者是一棵空树 x
  • C++面试常见题目

    C 43 43 面试常见题目 c 43 43 编译过程自动类型推导auto和decltype重载 重写 xff08 覆盖 xff09 和隐藏的区别C 43 43 构造函数和析构函数能调用虚函数吗volatile关键词运算符重载格式noexe
  • 计算机网络面试常问问题

    C 43 43 面试 计算机网络常见问题 计算机网络常见问题TCP IP协议笔记TCPTCP的特点及目的序列号与确认应答提高可靠性为什么是三次握手和四次挥手滑动窗口流量控制拥塞控制TCP粘包问题 httphttp和https的区别https
  • Trajectory generation for quadrotor while tracking a moving target in cluttered environment

    四旋翼在杂波环境下跟踪运动目标的轨迹生成 摘要1 文章主要贡献2 前言2 1 轨迹公式2 2 实现结构 3 跟踪轨迹生成3 1 标称路径点生成3 2 可行路径点生成3 3 安全飞行走廊生成3 4 代价函数3 5 强制约束3 6 求解跟踪轨迹
  • 翻译-Frustum PointNets for 3D Object Detection from RGB-D Data

    Frustum PointNets for 3D Object Detection from RGB D Data 摘要介绍相关工作从RGB D数据中检测三维物体基于前视图图像的方法 xff1a 基于鸟瞰图的方法 基于3D的方法 点云的深度
  • Online Trajectory Generation of a MAV for Chasing a Moving Target in 3D Dense Environments

    微型无人机的在线轨迹生成 xff0c 用于在3D密集环境中追踪运动目标 摘要一 介绍二 相关工作A 在障碍物环境中追逐B 通过预先规划安全地生成轨迹 三 问题陈述A 问题设置B 能力C 命名 IV 视点生成A 可见度指标B 具有安全性和可见
  • 配置目标跟踪开源项目traj_gen_vis踩过的坑

    项目地址 https github com icsl Jeon traj gen vis 安装依赖需注意的问题 traj gen with qpoases 需安装ros分支的代码 xff08 这个作者并没有指出 xff0c 坑 xff09
  • cmake arm-none-eabi-gcc for stm32 cpp project

    尝试把原有的stm32工程F1canBootloader用cmake来管理 xff0c 遇到了以下几个坑 xff1a 1 报错 xff0c undefined reference to 96 dso handle 39 CMakeFiles
  • 网络攻防之wireshark抓取登录信息

    使用wireshark抓取登录信息 简介 xff1a Wireshark xff08 前称Ethereal xff09 是一个网络封包分析软件 网络封包分析软件的功能是撷取网络封包 xff0c 并尽可能显示出最为详细的网络封包资料 Wire
  • 头文件互相包含所引发的的问题(深入剖析)

    今天写程序出现了一个让人蛋疼的错误 xff0c 后来发现是由于头文件互相包含所引起的 原本只是简单的以为头文件互相包含只会触发 xff0c 头文件的递归包含 即 xff0c A包含B xff0c 所以才A的头文件里会将B的头文件内容拷贝过来
  • C++11异步操作future和aysnc 、function和bind

    C 43 43 11异步操作future和aysnc function和bind 前言异步操作std future和std aysnc 介绍std future和std aysnc的使用Demostd packaged task 介绍std