项目——C++实现数据库连接池

2023-05-16

前言

在学习Mysql的时候,我们都有这个常识:对于DB的操作,其实本质上是对于磁盘的操作,如果对于DB的访问次数过多,其实就是涉及了大量的磁盘IO,这就会导致MYsql出现性能上的瓶颈。

项目背景

为了提高Mysql数据库的访问瓶颈,常用的方法有如下两个:

  1. 在服务器端增加缓存服务器缓存常用的数据(例如redis)
  2. 增加连接池,来提高MYsql Server的访问效率,在高并发的情况下,每一个用户大量的TCP三次握手。Mysql Server的连接认证,Mysql Server关闭连接回收资源和TCP四次挥手所耗费的性能时间也是明显的,增加连接池就是为了减少这一部分的性能损耗

注:常见的MySQL、Oracle、SQLServer等数据库都是基于C/S架构设计的。

市面上主流的Mysql数据库连接池,对于短时间内的大量增删改查操作的性能提升很明显,但大多数都是Java实现的,该项目的开展就是为了提高Mysql Server的访问效率,实现基于C++代码的数据库连接池模块。

针对于系统启动时就创建一定数量的连接,用户一旦执行CURD操作,直接拿出一条连接即可,不需要TCP的连接过程和资源回收过程,使用完该连接后归还给连接池的连接队列,供之后使用。

功能点介绍

连接池一般包含了数据库连接所用的ip地址、port端口号、username用户名、password密码以及其他一些性能参数:比如初始连接量、最大连接量、最大空闲时间、连接超时时间等,本项目重点实现上述通用功能

1、初始连接量(initSize):

  • 初始连接量表示连接池事先会和MySQL Server创建的initSize数量的Connection连接。在完成初始连接量之后,当应用发起MySQL访问时,不用创建新的MySQLServer连接,而是从连接池中直接获取一个连接,当使用完成后,再把连接归还到连接池中

2、最大连接量(maxSize)

  • 当并发访问MySQL Server的请求增加,初始连接量不够用了,此时会增加连接量,但是增加的连接量的上限就是maxSIze。因为每一个连接都会占用一个socket资源,一般连接池和服务器都是部署在一台主机上,如果连接池的连接数量过多,那么服务器就不能响应太多的客户端请求了。

3、最大空闲时间(maxIdleTime)

  • 高并发过去,因为高并发而新创建的连接在很长时间(maxIdleTime)内没有得到使用,那么这些新创建的连接处于空闲,并且占用着一定的资源,这个时候就需要将其释放掉,最终只用保存iniSize个连接就行。

4、连接超时时间(connectionTimeOut)

  • MySQL的并发访问请求量过大,连接池中的连接数量已经达到了maxSize,并且此时连接池中没有可以使用的连接,那么此时应用阻塞connectionTimeOut的时间如果此时间内有使用完的连接归还到连接池,那么他就可以使用,如果超过这个时间还是没有连接,那么它获取数据库连接池失败,无法访问数据库。

功能点实现的相关原理综述

  1. 连接池只需要一个实例,所以ConnectionPool以单例`模式设计;
  2. 从ConnectionPool中可以获取和Mysql的连接Connection;
  3. 空闲连接Connection全部维护在一个线程安全的Connection队列中,使用线程互斥锁保证队列的线程安;
  4. 如果Connection队列为空,还需要再获取连接,此时需要动态创建连接,上限数量是maxSize;
  5. 队列中空闲连接时间超过maxIdleTime的就会被释放掉,只保留初始的initSize个连接就可以了,这个功能点肯定要放在独立的线程中去做;
  6. 如果Connection队列为空,而此时连接的数量已达上限maxSize,那么等待ConnectionTimeout时间还获取不到空闲的连接,那么获取连接失败,此处从Connection队列获取空闲连接,可以使用带超时时间的mutex互斥锁来实现连接超时时间;
  7. 用户获取的连接用shared_ptr智能指针来管理,用lambda表达式定制连接释放的功能(不真正释放连接,而是把连接归还到连接池中);
  8. 连接的生产和连接的消费采用生产者-消费者线程模型来设计,使用了线程间的同步通信机制条件变量和互斥锁。

图示如下:
在这里插入图片描述

关键技术点

1、MySql数据库编程

目的:在C++下输入Sql语句对数据库进行操作的代码封装
说明:这里的MYSQL的数据库编程直接采用oracle公司提供的C++客户端开发包 , 读者可以自己查阅资料或搜索官方文档自行学习相关API的使用方法。

Connection.h:

class Connection
{
public:
	// 初始化数据库连接
	Connection();
	// 释放数据库连接资源
	~Connection();
	// 连接数据库
	bool connect(string ip,
		unsigned short port,
		string user,
		string password,
		string dbname);
	// 更新操作 insert、delete、update
	bool update(string sql);
	// 查询操作 select
	MYSQL_RES* query(string sql);
	// 刷新一下连接的起始的空闲时间点
	void refreshAliveTime() { _alivetime = clock(); }
	// 返回存活的时间
	clock_t getAliveeTime()const { return clock() - _alivetime; }
private:
	MYSQL* _conn; // 表示和MySQL Server的一条连接
	clock_t _alivetime; // 记录进入空闲状态后的起始存活时间
};

Connection.cpp:

Connection::Connection()
{
	// 初始化数据库连接
	_conn = mysql_init(nullptr);
}

Connection::~Connection()
{
	// 释放数据库连接资源
	if (_conn != nullptr)
		mysql_close(_conn);
}

bool Connection::connect(string ip, unsigned short port,
	string username, string password, string dbname)
{
	// 连接数据库
	MYSQL* p = mysql_real_connect(_conn, ip.c_str(), username.c_str(),
		password.c_str(), dbname.c_str(), port, nullptr, 0);
	return p != nullptr;
}

bool Connection::update(string sql)
{
	// 更新操作 insert、delete、update
	if (mysql_query(_conn, sql.c_str()))
	{
		LOG("更新失败:" + sql);
		return false;
	}
	return true;
}

MYSQL_RES* Connection::query(string sql)
{
	// 查询操作 select
	if (mysql_query(_conn, sql.c_str()))
	{
		LOG("查询失败:" + sql);
		return nullptr;
	}
	return mysql_use_result(_conn);
}

这里需要说明的是:在Windows上使用数据库需要进行相关配置,大致配置内容如下

  • 右键项目- C/C++ - 常规 -附加包含目录 - 增加mysql.h的头文件路径;
  • 右键项目 - 链接器 - 常规 - 附加库目录 - 填写libmysql.lib的路径;
  • 右键项目 - 链接器 - 输入 - 附加依赖项 - 填写libmysql.lib的路径;
  • 把libmysql.dll的动态链接库(Linux下后缀名是.so库)放在工程目录下。

2、数据库连接池单例代码

连接池仅需要一个实例,同时服务器肯定是多线程的,必须保证线程安全,所以采用懒汉式线程安全的单例:

CommonConnectionPool.h: 部分代码

class ConnectionPool
{
public:
	// 获取连接池对象实例
	static ConnectionPool* getConnectionPool();
	// 给外部提供接口,从连接池中获取一个可用的空闲连接
	shared_ptr<Connection> getConnection();
private:
	// 单例#1 构造函数私有化
	ConnectionPool();
};

CommonConnectionPool.cpp: 部分代码

// 线程安全的懒汉单例函数接口
ConnectionPool* ConnectionPool::getConnectionPool()
{
	static ConnectionPool pool; //静态对象初始化由编译器自动进行lock和unlock
	return &pool;
}

3、queue队列容器

连接池的数据结构是queue队列,最早生成的连接connection放在队头,此时记录一个起始时间,这一点在后面最大空闲时间时会发挥作用:如果队头都没有超过最大空闲时间,那么其他的一定没有

CommonConnectionPool.cpp 的连接池构造函数:

// 连接池的构造
ConnectionPool::ConnectionPool()
{
	// 加载配置项了
	if (!loadConfigFile())
	{
		return;
	}

	// 创建初始数量的连接
	for (int i = 0; i < _initSize; ++i)
	{
		Connection* p = new Connection();//创建一个新的连接
		p->connect(_ip, _port, _username, _password, _dbname);
		p->refreshAliveTime(); // 刷新一下开始空闲的起始时间
		_connectionQue.push(p);
		_connectionCnt++;
	}
}

连接数量没有到达上限,继续创建新的连接

if (_connectionCnt < _maxSize)
{
	Connection* p = new Connection();
	p->connect(_ip, _port, _username, _password, _dbname);
	p->refreshAliveTime(); // 刷新一下开始空闲的起始时间
	_connectionQue.push(p);
	_connectionCnt++;
}

扫描整个队列,释放多余的连接(高并发过后,新建的连接超过最大超时时间时)


unique_lock<mutex> lock(_queueMutex);
while (_connectionCnt > _initSize)
{
	Connection* p = _connectionQue.front();
	if (p->getAliveTime() >= (_maxIdleTime * 1000))
	{
		_connectionQue.pop();
		_connectionCnt--;
		// 调用~Connection()释放连接
		delete p;
	}
	else
	{
		// 如果队头的连接没有超过_maxIdleTime,其他连接肯定没有
		break;
	}
}

4、多线程编程

为了将多线程编程的相关操作应用到实际,也为了进行压力测试,用结果证明使用连接池之后对数据库的访问效率确实比不使用连接池的时候高很多,使用了多线程来进行数据库的访问操作,并且观察多线程下连接池对于性能的提升。

代码如下:

int main()
{
	thread t1([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "991205", "chat");
			conn.update(sql);
		}
		});
	thread t2([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "991205", "chat");
			conn.update(sql);
		}
		});
	thread t3([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "991205", "chat");
			conn.update(sql);
		}
		});
	thread t4([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "male");
			conn.connect("127.0.0.1", 3306, "root", "991205", "chat");
			conn.update(sql);
		}
		});

	t1.join();
	t2.join();
	t3.join();
	t4.join();

	return 0;
}

五、线程互斥、线程同步通信(生产者-消费者模型)、unique_lock

连接池中连接队列的连接的生产和消费需要保证其线程安全,于是我们需要引入互斥锁mutex,线程同步通信确保执行顺序,以及唯一锁。

代码如下:

class ConnectionPool
{
private:
	// 设置条件变量,用于连接生产线程和连接消费线程的通信
	condition_variable cv;				
	// 维护连接队列的线程安全互斥锁
	mutex _queueMutex;
};

for (;;)
{
	unique_lock<mutex> lock(_queueMutex);
	while (!_connectionQue.empty())
	{
		// 队列不为空,此处生产线程进入等待状态
		cv.wait(lock);
	}

	// 连接数量没有达到上限,继续创建新的连接
	if (_connectionCnt < _maxSize)
	{
		Connection* p = new Connection();
		p->connect(_ip, _port, _username, _password, _dbname);
		// 刷新一下开始空闲的起始时间
		p->refreshAliveTime();
		_connectionQue.push(p);
		_connectionCnt++;
	}

	// 通知消费者线程,可以消费连接了
	cv.notify_all();
}
// 启动一个新的线程,作为连接的生产者 linux thread => pthread_create
thread produce(std::bind(&ConnectionPool::produceConnectionTask, this));
produce.detach();

// 启动一个新的定时线程,扫描超过maxIdleTime时间的空闲连接,进行对于的连接回收
thread scanner(std::bind(&ConnectionPool::scannerConnectionTask, this));
scanner.detach();

六、CAS原子操作

对于连接池内的连接数量,生产者和消费者线程都会去改变其值,那么这个变量的修改就必须保证其原子性,于是使用C++11中提供的原子类:atomic_int

atomic_int _connectionCnt; // 记录连接所创建的connection连接的总数量 

// 生产新连接时:
_connectionCnt++;
// 当新连接超过最大超时时间后被销毁时
_connectionCnt--;

七、shared_ptr及lambda表达式

对于使用完成的连接,不能直接销毁该连接,而是需要将该连接归还给连接池的队列,供之后的其他消费者使用,于是我们使用智能指针,自定义其析构函数,完成放回的操作:

shared_ptr<Connection> sp(_connectionQue.front(),
	[&](Connection* pcon) {
		// 这里是在服务器应用线程中调用的,所以一定要考虑队列的线程安全操作
		unique_lock<mutex> lock(_queueMutex);
		pcon->refreshAliveTime();
		_connectionQue.push(pcon);
	});

八、压力测试

测试添加连接池后效率是否提升:

未使用连接池

  1. 单线程
int main()
{
	clock_t begin = clock();
	for (int i = 0; i < 1000; ++i)
	{
		Connection conn;
		char sql[1024] = { 0 };
		sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
			"zhang san", 20, "M");
		conn.connect("127.0.0.1", 3306, "root", "123456", "chat");
		conn.update(sql);
	}
	clock_t end = clock();
	cout << (end - begin) << "ms" << endl;
	return 0;
}

运行时间如下:
在这里插入图片描述

  1. 多线程
int main()
{
	Connection conn;
	conn.connect("127.0.0.1", 3306, "root", "991205", "chat");
	clock_t begin = clock();

	thread t1([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "123456", "chat");
			conn.update(sql);
		}
		});
	thread t2([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "123456", "chat");
			conn.update(sql);
		}
		});
	thread t3([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "123456", "chat");
			conn.update(sql);
		}
});
	thread t4([]() {
		for (int i = 0; i < 250; ++i)
		{
			Connection conn;
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			conn.connect("127.0.0.1", 3306, "root", "123456", "chat");
			conn.update(sql);
		}
		});

	t1.join();
	t2.join();
	t3.join();
	t4.join();

	clock_t end = clock();
	cout << (end - begin) << "ms" << endl;
	return 0;
}

运行时间如下:
在这里插入图片描述

使用连接池

  1. 单线程
int main()
{
	clock_t begin = clock();
	ConnectionPool* cp = ConnectionPool::getConnectionPool();
	for (int i = 0; i < 1000; ++i)
	{
		shared_ptr<Connection> sp = cp->getConnection();
		char sql[1024] = { 0 };
		sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
			"zhang san", 20, "M");
		sp->update(sql);
	}

	clock_t end = clock();
	cout << (end - begin) << "ms" << endl;
	return 0;
}

运行时间如下:在这里插入图片描述

  1. 多线程
int main()
{
	clock_t begin = clock();

	thread t1([]() {
		ConnectionPool* cp = ConnectionPool::getConnectionPool();
		for (int i = 0; i < 250; ++i)
		{
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			shared_ptr<Connection> sp = cp->getConnection();
			sp->update(sql);
		}
		});
	thread t2([]() {
		ConnectionPool* cp = ConnectionPool::getConnectionPool();
		for (int i = 0; i < 250; ++i)
		{
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			shared_ptr<Connection> sp = cp->getConnection();
			sp->update(sql);
		}
		});
	thread t3([]() {
		ConnectionPool* cp = ConnectionPool::getConnectionPool();
		for (int i = 0; i < 250; ++i)
		{
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			shared_ptr<Connection> sp = cp->getConnection();
			sp->update(sql);
		}
		});
	thread t4([]() {
		ConnectionPool* cp = ConnectionPool::getConnectionPool();
		for (int i = 0; i < 250; ++i)
		{
			char sql[1024] = { 0 };
			sprintf(sql, "insert into user(name,age,sex) values('%s',%d,'%s')",
				"zhang san", 20, "M");
			shared_ptr<Connection> sp = cp->getConnection();
			sp->update(sql);
		}
		});

	t1.join();
	t2.join();
	t3.join();
	t4.join();

	clock_t end = clock();
	cout << (end - begin) << "ms" << endl;
	return 0;
		}

在这里插入图片描述

比较

在使用了连接池之后,性能确实提升了不少

  • 数据量1000,单线程从1417ms变成697ms
  • 数据量1000,多线程从420ms变成了307ms
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

项目——C++实现数据库连接池 的相关文章

  • hexo next 博客,jsdelivr cdn报错无法访问

    一 博客环境 我的hexo版本是5 4 0 xff0c next版本是7 8 0 因 jsdelivr cdn报错导致博客首页无法访问 二 修改next cdn 首先进入hexo博客首页 xff0c F12查看报错的 jsdelivr 地址
  • busuanzi.ibruce.info 有时候报502,怎么解决

    一 现象 https busuanzi ibruce info 访问经常出现502 导致个人博客的访问人数无法正常显示 二 如何解决 用chrome 打开busuanzi ibruce info xff0c 点url链接前的那个锁 然后看到
  • BigDecimal和Double的区别

    Double span class token number 0 3 span span class token number 0 2 span span class token operator 61 span span class to
  • 对科里奥利力的理解

    首先创造一个情景 xff0c 方便理解 假设你站在一个这样的封闭靶场 xff08 全封闭 xff09 上 xff0c 这个靶场在以大小为 的角速度做匀速圆周运动 xff08 速度不大不小 xff0c 你感觉不到 xff0c 而且靶场没风 x
  • typora使用技巧

    1 Typora vue theme的介绍与下载 typora vue theme是参考了Vue文档风格而开发的一个 Typora 自定义主题 点击此处下载 2 如何安装 a 下载本主题中的vue css vue dark css文档和包含
  • 序列化什么意思

    序列化就是一种用来处理对象流的机制 xff0c 将对象转化成字节序列后可以保存在磁盘上 xff0c 或通过网络传输 xff0c 以达到以后恢复成原来的对象
  • mybatis plus 事务回滚总结

    https www cnblogs com c2g5201314 p 13163097 html
  • throw 和 try catch 的区别

    try catch是直接处理 xff0c 处理完成之后程序继续往下执行 xff0c throw则是将异常抛给它的上一级处理 xff0c 程序便不往下执行了
  • throw的异常日志会打印吗

    throw 就是要把异常继续抛出 xff0c 要么由上层方法解决 xff0c 要么会终止程序运行
  • java assert什么意思

    assert 意为断言的意思 xff0c 这个关键字可以判断布尔值的结果是否和预期的一样 xff0c 如果一样就正常执行 xff0c 否则会抛出AssertionError assert 的使用 xff1a span class token
  • throw和throws的区别

    throws xff1a 用来声明一个方法可能产生的所有异常 xff0c 不做任何处理而是将异常往上传 xff0c 谁调用我我就抛给谁 用在方法声明后面 xff0c 跟的是异常类名 可以跟多个异常类名 xff0c 用逗号隔开 表示抛出异常
  • 1024有感

    2022 10 24 1024节日快乐 xff01 好好学习 xff0c 天天向上 x1f600
  • 互联网项目一般几轮测试

    第一轮测试 xff1a 要覆盖所有测试用例 所有功能都要跑一遍 第二轮测试 xff1a 重点功能的测试 还要把第一轮测试发现的问题 xff0c 根据开发修改完成的结果 xff0c 进行验证 最后一轮是回归测试 xff1a 验证所有bug是否
  • IDEA pom文件 ctrl alt l无法格式化

    File gt Manage IDE settings gt Restore Default settings 恢复IDEA默认设置后 xff0c 即可格式化pom文件
  • 科里奥利力简单清晰的推导

    看到一个比较好的科里奥利力推导方法 xff1a 如果你不太理解科里奥利力 xff0c 可以看一下我的这篇文章 xff1a 对科里奥利力的理解 本文参考 xff1a 1 黄永义 科里奥利力简单而清晰的导出 J 广西物理 2015 36 04
  • java实体类命名

    Entity xff1a 与数据库表结构一一对应 xff0c 通过Dao层向上传输数据源对象 Dto xff08 Data Transfer Object xff09 xff1a 数据传输对象 xff0c Service或Manager向外
  • 字节的高低位互换

    蝶式交换法 unsigned char Reverse byte unsigned char data data 61 data lt lt 4 data gt gt 4 data 61 data lt lt 2 amp 0xcc data
  • 没有Build文件夹的情况下(最新的vue-cli3没有)怎么关闭掉ESlink

    这里写目录标题 一般的注释掉Build中的方法最新的vue cli3没有build文件夹怎么办 一般的注释掉Build中的方法 在build文件夹 gt webpack base conf js中注释以下代码 和在IntelliJ IDEA
  • 使用zed摄像头跑ORB_SLAM2

    zed ros wrapper安装 首先对zed ros wrapper安装 xff1a 具体操作步骤及代码的参考链接 xff1a https github com stereolabs zed ros wrapper git mkdir
  • 【linux网络编程学习笔记】第二节:创建TCP通信(双向)(socket、bind、listen、accept、connect、recv、send、shutdown、server\client)

    Work won 39 t kill but worry will 劳动无害 xff0c 忧愁伤身 上一篇章中创建了TCP的客户端的服务器 xff0c 但是只能单向发送 xff0c 本章节主要讲解如何进行双向互发消息 xff0c 实现的过程

随机推荐

  • 航模电池及稳压降压模块—毕设简记

    航模电池及稳压降压模块简介 简述 准备给设计的控制系统选一块航模电池 xff0c 需要关注什么参数 xff1f 控制系统的传感器需要5V供电 直流减速电机需要12V供电 单片机需要7 12V供电 xff0c 这么多供电该怎么处理 xff1f
  • Laplance算子(二阶导数)

    理论 xff1a 在二阶导数的时候 xff0c 最大变化处的值为0 即边缘是零 xff0c 通过二阶导数计算 xff0c 依据此理论我们可以计算图像的二阶导数 xff0c 提取边缘 Laplance算子 二阶导数我不会 xff0c 别担心
  • yolo3_pytorch 训练voc数据集和训练自己的数据集并进行预测(github代码调试)

    训练voc数据集的步骤 xff1a xff1a 首先下载voc数据集 xff0c 将数据集放在从github中下载的项目中VOCdevkit目录中 xff08 直接将数据集拉入到项目中 xff0c 替代目标文件即可 xff09 源码下载 x
  • ros的通信机构

    ros的通信是在os层之上 xff0c 基于TCP IP协议实现 os层 xff08 操作系统层 xff09 对于开发者来讲 xff0c 是不需要关系的 中间层 xff1a TCPROS UDPROS 这是基于TCP IP协议进行重新封装的
  • 视频追踪(meanshift和camshift算法)

    import numpy as np import cv2 as cv opencv实现meanshift的api cv meanShift probImage window criteria 参数一 xff1a roi区域 xff0c 目
  • 国产的Arduino Mega 2560 R3改进版串口1丝印标注错误

    Mega 2560有四个串口 xff1a 分别是串口0 xff0c 串口1 xff0c 串口2 xff0c 串口3 而串口1的丝印标注反了 在板子中烧录如下代码 xff0c 则串口1的TX应该不断的有输出 xff0c RX没有 void s
  • Visual Studio实现光流法(opencv and Eigen)

    环境问题 xff1a 首先是在vs中安装opencv和eigen两个库 安装eigen库所推荐的链接 xff1a VS2019正确的安装Eigen库 xff0c 解决所有报错 xff08 全网最详细 xff01 xff01 xff09 Ma
  • Deformable DETR环境配置和应用

    准备工作 xff1a Deformable DETR代码路径如下 xff1a GitHub fundamentalvision Deformable DETR Deformable DETR Deformable Transformers
  • A review of visual SLAM methods for autonomous driving vehicles

    自主驾驶车辆的视觉SLAM方法回顾 原论文在文章末尾 摘要 xff1a 自主驾驶车辆在不同的驾驶环境中都需要精确的定位和测绘解决方案 在这种情况下 xff0c 同步定位和测绘 xff08 SLAM xff09 技术是一个很好的研究解决方案
  • slam原理介绍和经典算法

    1 传统slam局限性 slam算法假设的环境中的物体都是处于静态或者低运动状态的 xff0c 然而 xff0c 现实世界是复杂多变的 xff0c 因此这种假设对于应用 环境有着严格的限制 xff0c 同时影响视觉slam系统在实际场景中的
  • Git教程(李立超git和GitHub使用)

    Git教程 配置 配置name和email git config global user name 34 xxxx 34 git config global user email 34 xxx 64 xxx xxx 34 git statu
  • 需求:节目上传至MINIO后,使用mqtt进行上报

    需求 xff1a 节目上传至MINIO后 xff0c 使用mqtt进行上报 环境准备 文件管理平台 xff1a 首先需要使用minio搭建属于自己的对象存储 xff08 此步骤跳过 xff09 通信方式 xff1a MQTT方式 xff0c
  • Vue.js自定义事件的使用(实现父子之间的通信)

    vue v model修饰符 xff1a lazy number trim attrs数据的透传 xff0c 在组件 xff08 这个是写在App vue中 xff09 数据就透传到student组件中 xff0c 在template中可以
  • 简单算法——二分搜索的递归版本和非递归版本

    二分搜索 这是大家比较熟悉的算法了 xff0c 我们今天来复习一下 xff1a 前提 xff1a 二分查找要求所查找的顺序表必须是有序的 算法思路 定义left为顺序表最左端元素位置 xff0c right为顺序表右端元素位置 定义mid
  • Mysql(14)——事务

    概念 一个事务是由一条或者多条对数据库操作的SQL语句所组成的一个不可分割的单元 只有当事务中的所有操作都正常执行完了 xff0c 整个事务才会被提交给数据库 xff1b 如果有部分事务处理失败 xff0c 那么事务就要回退到最初的状态 x
  • Mysql(15)——锁机制 + MVCC(全)

    前言 事务的隔离级别在之前我们已经学习过 xff0c 那么事务隔离级别的实现原理是什么呢 xff1f 锁 43 MVCC 下面我们就来分开讲解 xff1a 表级锁 amp 行级锁 注意 xff1a 表锁和行锁说的是锁的粒度 xff0c 不要
  • DIY无人机组装与飞控参数调试记录(DJI NAZA-LITE)

    早就想玩一玩无人机 xff0c 奈何各种原因一直没有机会 xff0c 工作之后资金富足 xff0c 加上本身工作和这个相关性比较大 xff0c 于是就自己DIY了一台无人机 一 材料准备 xff1a F450机架 GPS支架 好盈乐天 20
  • Mysql(16)——日志

    前言 我们之前了解过redo log和undo log xff0c 他们是作用在InnoDb存储引擎层的 xff0c 今天我们来讲讲服务层的其他日志类型 一 错误日志 错误日志是 MySQL 中最重要的日志之一 xff0c 它记录了当 my
  • Mysql(17)——优化

    前言 一 SQL和索引优化 二 应用优化 除了优化SQL和索引 xff0c 很多时候 xff0c 在实际生产环境中 xff0c 由于数据库服务器本身的性能局限 xff0c 就必须要对上层的应用来进行一些优化 xff0c 使得上层应用访问数据
  • 项目——C++实现数据库连接池

    前言 在学习Mysql的时候 xff0c 我们都有这个常识 xff1a 对于DB的操作 xff0c 其实本质上是对于磁盘的操作 xff0c 如果对于DB的访问次数过多 xff0c 其实就是涉及了大量的磁盘IO xff0c 这就会导致MYsq