RT-Thread记录(十一、I/O 设备模型之UART设备 — 源码解析)

2023-10-27

深入理解 RT-Thread I/O 设备模型 — 分析 UART设备源码。

前言

上文我们认识了解了 RT-Thread I/O 设备模型,本来计划是从最简单的设备 GPIO 口开始讲解 RT-Thread 的设备模型,但是实际上 PIN 设备模型有点特殊,并不是完美符合上一篇博文中 《2.3 访问 I/O 设备相关》小结介绍的函数,所以这个我们放在后面文章说明。

而 UART 设备模型的操作完美贴合上一篇博文的介绍,所以我把 UART 设备先说明了,这样更加加深一下对 RT-Thread I/O 设备模型的认识。

本文从 UART 设备驱动层 和 设备驱动框架层 分析 RT-Thread 中 UART 设备的实现。目的在于通过官方一个成熟的设备驱动的实例,让我们确实的理解体会 RT-Thread I/O 设备模型。

本 RT-Thread 专栏记录的开发环境:
RT-Thread记录(一、RT-Thread 版本、RT-Thread Studio开发环境 及 配合CubeMX开发快速上手)
RT-Thread记录(二、RT-Thread内核启动流程 — 启动文件和源码分析)
RT-Thread 设备篇系列博文链接:
RT-Thread记录(十、全面认识 RT-Thread I/O 设备模型)

一、初识 UART 操作函数(应用程序)

首先我们来看一下在 RT-Thread 中 UART 操作函数,这是模型框架中最上层的应用层所需要调用的函数,如下面的表格:

函数 描述
rt_device_find() 查找设备
rt_device_open() 打开设备
rt_device_read() 读取数据
rt_device_write() 写入数据
rt_device_control() 控制设备
rt_device_set_rx_indicate() 设置接收回调函数
rt_device_set_tx_complete() 设置发送完成回调函数
rt_device_close() 关闭设备

可以看到,对 UART 的操作和上一篇文章 《RT-Thread记录(十、全面认识 RT-Thread I/O 设备模型)》 几乎一模一样,这也是前言中我说的为什么 UART 设备模型 是复习理解 RT-Thread I/O 设备模型的完美设备。

对于这些操作函数,是给最上层的应用程序使用的,我们要使用一个 UART 设备,应用程序最开始肯定是需要使用rt_device_find()查找设备,在上一篇文章说过,大部分常用的设备 RT-Thread 已经帮我们写好了驱动,我们直接在应用层调用操作接口即可,UART的驱动也是 RT-Thread 已经写好的。

那么我们该查找什么名字呢?RT-Thread 底层是如何实现的呢? 带着这些问题,我们从最开始来分析说明一下 RT-Thread 的 UART 设备。

❤️ 先列出 RT-Thread 的 UART 操作函数,让我们对 UART 应用层的函数有个了解,然后带着一些好奇让我们从底层源码来分析一下 RT-Thread 的 UART 设备。

二、UART 的初始化

首先,UART 设备作为一个外设,肯定需要初始化,我们在系列博文第二篇《RT-Thread记录(二、RT-Thread内核启动流程 — 启动文件和源码分析)》分析过 RT-Thread 初始化。

2.1 UART 设备初始化位置

在文中章节 “2.2.1 板级硬件初始化 — rt_hw_board_init” 讲到了硬件初始化相关,如下图:

在这里插入图片描述

rt_hw_board_init() 函数中有一个 hw_board_init,使用到的 UART 设备的初始化就在这个函数里面,如图:

在这里插入图片描述

说明一下,这个hw_board_init里面初始化的哪些设备是和 RT-Thread 配置一一对应的。

注意到他们都是条件编译,在 env 工具中配置了使用的外设之后,都会在这里进行初始化,对于我们使用 RT-Thread Studio 来说,就是如下图所示:

在这里插入图片描述

2.2 UART 设备初始化函数分析

通过上文介绍,我们找到了 UART 设备的初始化函数 rt_hw_usart_init

int rt_hw_usart_init(void)
{
    rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
    struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
    rt_err_t result = 0;

    stm32_uart_get_dma_config();

    for (int i = 0; i < obj_num; i++)
    {
        uart_obj[i].config = &uart_config[i];
        uart_obj[i].serial.ops    = &stm32_uart_ops;
        uart_obj[i].serial.config = config;
        /* register UART device */
        result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
                                       RT_DEVICE_FLAG_RDWR
                                       | RT_DEVICE_FLAG_INT_RX
                                       | RT_DEVICE_FLAG_INT_TX
                                       | uart_obj[i].uart_dma_flag
                                       , NULL);
        RT_ASSERT(result == RT_EOK);
    }

    return result;
}

这个初始化函数直接看上去,只有一个函数我们比较熟悉rt_hw_serial_register,顾名思义,串口设备注册函数,不同于简单的 I/O 设备注册函数 rt_device_register,说明它 UART 设备还有设备驱动框架层,这个rt_hw_serial_register就是 UART 设备驱动框架层定义的函数。

这个设备驱动层 和 设备驱动框架层我们待会再来说明,我们先从头简单分析一下这个 UART 设备驱动程序。

第一句,这个语句是为了确认一下有几个串口设备需要进行初始化:

rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);

其中 uart_obj 有如下定义:

static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};

uart_objstm32_uart 类型的结构体数组,其数组长度为sizeof(uart_config)/sizeof(uart_config[0])

stm32_uart 结构体

在 RT-Thread 操作系统中,对 UART设备的初始化,可以理解为就是对 stm32_uart 结构体对象 的初始化 。

我画了一张结构图如下:
在这里插入图片描述

stm32_uart 结构体这里我们先不分析里面具体的含义,在后文对应的地方都会有响应的说明,我们先回到初始化的问题上来。

我们接着上面分析,数组变量 uart_obj 的长度是多少呢?看一下 uart_config 是什么,如下图:
在这里插入图片描述

uart_configstm32_uart_config 类型的结构体数组,其数组长度是根据 RT-Thread 配置使用哪些串口决定的。

比如我们使用了 串口1 和 串口3,那么uart_config 就等于:

static struct stm32_uart_config uart_config[2] =
{
    UART1_CONFIG,
    UART3_CONFIG,
};

UARTX_CONFIG

这里讲到 UART1_CONFIG 就顺带提一下,UART1_CONFIGstm32_uart_config 类型的结构体,在RT-Thread 中是通过 宏定义来定义的:
在这里插入图片描述

引出这么多,我们回到最初的rt_hw_usart_init函数第一句的代码:

rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);

以上面为例,只使用了 UART1 和 UART3 ,uart_obj数组长度为2,也就表明有2个stm32_uart 结构体的成员需要进行初始化,也就是需要初始化 2个 UART 设备。 上面句子中 obj_num = 2;

接下来的语句:

struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;

串口配置结构体,初始化等于默认配置,这里具体也好理解,看下图便知:
在这里插入图片描述

再往下看,获取串口 DMA 配置:

stm32_uart_get_dma_config();

函数如下,如果没有使用DMA ,那么只会有一条语句,就是 uart_dma_flag = 0; 表示没有使用DMA。

在上面我们介绍stm32_uart 结构体的时候,uart_dma_flag 就是这个结构体的一个成员变量。
在这里插入图片描述

stm32_uart 结构体初始化

再接下来就是uart_obj[i]的初始化了,有几个串口就初始化几遍:

 for (int i = 0; i < obj_num; i++)
    {
        uart_obj[i].config = &uart_config[i];
        uart_obj[i].serial.ops    = &stm32_uart_ops;
        uart_obj[i].serial.config = config;
        /* register UART device */
        result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
                                       RT_DEVICE_FLAG_RDWR
                                       | RT_DEVICE_FLAG_INT_RX
                                       | RT_DEVICE_FLAG_INT_TX
                                       | uart_obj[i].uart_dma_flag
                                       , NULL);
        RT_ASSERT(result == RT_EOK);
    }

首先里面第一句:

uart_obj[i].config = &uart_config[i];

其中 uart_config[i] 就是我们上文说的 UARTX_CONFIG,通过宏定义定义的 stm32_uart_config 类型的结构体。

第二句:

 uart_obj[i].serial.ops    = &stm32_uart_ops;

上文分析过stm32_uart 结构体,但是并没有深入分析其中的成员serial,它是 RT-Thread 的 UART 设备对象控制块,其中ops为结构体类型的指针:
在这里插入图片描述
stm32_uart_ops为 RT-Thread 设备驱动层定义好的,其作用是指定 UART 设备的操作函数:
在这里插入图片描述

第三句:

uart_obj[i].serial.config = config;

上文讲过的,默认都是RT_SERIAL_CONFIG_DEFAULT,如果我们需要修改,可以通过rt_device_control修改。

第四句:

result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
                                       RT_DEVICE_FLAG_RDWR
                                       | RT_DEVICE_FLAG_INT_RX
                                       | RT_DEVICE_FLAG_INT_TX
                                       | uart_obj[i].uart_dma_flag
                                       , NULL);

这个函数就是我们讲过的 I/O 设备模型中的设备注册函数,如图:
在这里插入图片描述

在上面初始化中:
uart_obj[i].serial 为 rt_serial_device 类型,就是 UART 设备的控制块,它付给注册函数第一个参数;
uart_obj[i].config->name 中的name名字,就是设备注册后 使用rt_device_find() 寻找的名字。

其中rt_hw_serial_register函数属于(设备驱动框架层的函数),他会调用通用的 rt_device_register(I/O设备管理层的函数)对 UART 设备进行注册。

2.3 UART 设备初始化结果图

经过上面的一系列分析,最终一个 UART设备初始化以后的结果如下图所示:

在这里插入图片描述

❤️ UART 的初始化,最主要的是要了解 stm32_uart 结构体(以STM32驱动为例),通过对结构体的认识,初始化步骤的分析,让我们认识到了RT-Thread 对于 UART 设备驱动层的设计,也让我们接下来对认识 不同层之间如何联系打下了一定的基础。

三、UART 设备驱动框架层

我们回头来看本文开头说的 UART 那些操作函数,再结合上文所提到的初始,再结合上一篇文章《RT-Thread记录(十、全面认识 RT-Thread I/O 设备模型)》的基础,我们可以确定,上层应用所用到的UART 操作函数就是在使用rt_hw_serial_register 时候关联到驱动框架层的:
在这里插入图片描述

而且再复习一下, 设备驱动框架层是 RT-Thread 系统的东西,官方已经写好的,UART 设备驱动框架层的代码为 serial.c,其位置如下图:

在这里插入图片描述

在其对应的 serial.h 头文件中包含了许多 UART 设备通用的宏定义,大家可以自行查看。

设备驱动框架层如何与设备驱动层关联

☆在这里我们主要需要关注的就是,设备驱动框架层是如何 和 设备驱动层关联起来的。☆

首先我们先看一下其中的几个串口操作函数:

设备驱动框架层操作函数 对应
rt_serial_init() device->init = rt_serial_init
rt_serial_open() device->open = rt_serial_open
rt_serial_close() device->close = rt_serial_close
rt_serial_read() device->read = rt_serial_read
rt_serial_write() device->write = rt_serial_write
rt_serial_control() device->control = rt_serial_control

我们随意查看其中一个函数查看,如下图:
在这里插入图片描述

可以看到上图有一句关键的代码:

if (serial->ops->configure)
        result = serial->ops->configure(serial, &serial->config);

上面我们在将初始化的时候有过代码:

/*
static const struct rt_uart_ops stm32_uart_ops =
{
    .configure = stm32_configure,
    .control = stm32_control,
    .putc = stm32_putc,
    .getc = stm32_getc,
    .dma_transmit = stm32_dma_transmit
};
*/
uart_obj[i].serial.ops    = &stm32_uart_ops;

所以上面的表格可进一步的改为如下对应表格:

设备驱动层 设备驱动框架层操作函数 对应
stm32_configure() rt_serial_init() device->init = rt_serial_init
stm32_control() rt_serial_open() device->open = rt_serial_open
stm32_control() srt_serial_close() device->close = rt_serial_close
stm32_getc()轮询接收,实际一般用中断 rt_serial_read() device->read = rt_serial_read
stm32_putc() srt_serial_write() device->write = rt_serial_write
stm32_configure() rt_serial_control() device->control = rt_serial_control

通过上面的分析,基本上有点拨云见日的感觉!

❤️ UART 设备驱动框架层是 RT-Thread 系统通用的,他上连接 I/O 设备管理层,下连接 设备驱动层。 通过分析,我们已经知道他们之间如何关联。

四、UART 设备驱动层

其实在上面的文章分析的时候已经说清楚了 UART 设备驱动是如何与 设备驱动层关联起来的。

在 RT-Thread 中,我们的 UART 设备驱动文件为:drv_usart.c ,其位置位于 drivers 文件夹下面:
在这里插入图片描述

这一层就是与我们使用的硬件设备直接关联的一层,我们在上面介绍的 UART 设备初始化函数也在这个驱动文件中。

再次复习一下,设备驱动层是与使用的硬件直接关联的,因为使用的是STM32 ,其很多地方都调用了 ST官方 HAL 库的定义,是在 HAL 库的基础之上实现的驱动代码。

我们只选几个部分做示例说明,在驱动中下面几个函数肯定是有的:
在这里插入图片描述

配置函数

我们看一下驱动层的配置函数stm32_configure,不难发现这个函数其实和裸机中的差不多,其中还调用了 HAL 库中的 HAL_UART_Init函数(函数还是比较简单的,我们这里说明一下举个例子即可):

static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
    struct stm32_uart *uart;
    RT_ASSERT(serial != RT_NULL);
    RT_ASSERT(cfg != RT_NULL);

    uart = rt_container_of(serial, struct stm32_uart, serial);

    /* uart clock enable */
    stm32_uart_clk_enable(uart->config);
    /* uart gpio clock enable and gpio pin init */
    stm32_gpio_configure(uart->config);

    uart->handle.Instance          = uart->config->Instance;
    uart->handle.Init.BaudRate     = cfg->baud_rate;
    uart->handle.Init.HwFlowCtl    = UART_HWCONTROL_NONE;
    uart->handle.Init.Mode         = UART_MODE_TX_RX;
    uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
    switch (cfg->data_bits)
    {
    case DATA_BITS_8:
        uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
        break;
    case DATA_BITS_9:
        uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
        break;
    default:
        uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
        break;
    }
    switch (cfg->stop_bits)
    {
    case STOP_BITS_1:
        uart->handle.Init.StopBits   = UART_STOPBITS_1;
        break;
    case STOP_BITS_2:
        uart->handle.Init.StopBits   = UART_STOPBITS_2;
        break;
    default:
        uart->handle.Init.StopBits   = UART_STOPBITS_1;
        break;
    }
    switch (cfg->parity)
    {
    case PARITY_NONE:
        uart->handle.Init.Parity     = UART_PARITY_NONE;
        break;
    case PARITY_ODD:
        uart->handle.Init.Parity     = UART_PARITY_ODD;
        break;
    case PARITY_EVEN:
        uart->handle.Init.Parity     = UART_PARITY_EVEN;
        break;
    default:
        uart->handle.Init.Parity     = UART_PARITY_NONE;
        break;
    }

    if (HAL_UART_Init(&uart->handle) != HAL_OK)
    {
        return -RT_ERROR;
    }

    return RT_EOK;

发送函数:
在这里插入图片描述

关于中断:

中断入口函数还是我们熟悉的USART1_IRQHandler,其流程如下图所示:

在这里插入图片描述

UART 设备驱动层直接与 UART 硬件相关,其中函数都可以直接对硬件进行操作,其实上层应用可以直接调用 驱动层的函数使用,很多函数的实现基于官方的HAL 库。

结语

本文通过对 UART设备初始化分析,对 UART 设备模型各层次的源码关联进行对应说明,通过现成的UART 设备模型,我们更加的理解了 RT-Thread 的I/O 设备模型,最后总结如图所示:
在这里插入图片描述
其实从应用来说,知道不知道底层的这些实现都没有太大的关系,所以即便一下子看不懂也没有关系,多看看源码,静下心来好看还是不难理解的。

❤️ 如果上一篇博文还没能理解 RT-Thread I/O 设备模型,那么加上这篇文章,你一定行 (* ̄︶ ̄) ❤️

为了加深对 RT-Thread 的I/O 设备模型的说明,本文花了不少时间,在接下来的设备使用测试中,如果不是特除情况,应该就不会再进行这样的分析了,我们就要正式进入 RT-Thread 设备的使用学习过程。

下一篇文章我们就要从 UART 设备使用开始学习 RT-Thread 设备的使用。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

RT-Thread记录(十一、I/O 设备模型之UART设备 — 源码解析) 的相关文章

  • Linux 块设备驱动实验

    一 块设备驱动要远比字符设备驱动复杂得多 不同类型的存储设备又对应不同的驱动子系统 本章我们重点学习一下块设备相关驱动概念 不涉及到具体的存储设备 1 什么是块设备 块设备是针对存储设备的 比如 SD 卡 EMMC NAND Flash N
  • 异步通知实验(信号)

    目录 异步通知 异步通知简介 驱动中的信号处理 应用程序对异步通知的处理 硬件原理图分析 实验程序编写 修改设备树文件 程序编写 编写测试APP 运行测试 编译驱动程序和测试APP 运行测试 在前面使用阻塞或者非阻塞的方式来读取驱动中按键值
  • 基于STM32MP157调试MIPI-DSI屏幕

    平台 STM32MP157 屏幕 mipi dsi接口 1024x600 内核版本 linux5 4 本人是第一次调试mipi屏 在157这个平台上遇到的问题有一点多 接下来简单的描述下我的调试经验 一 先配置一下设备树DTB ltdc p
  • fb设备驱动1:fb设备的显像原理和步骤

    lcd的显像原理 将DDR内存的一部分划分出来作为显存 显存与lcd显示屏幕之间做一个双向的映射 然后用户只需要将需要显示的内容放入显存之中 然后显存中的内容就会刷新到lcd的储存器中进行显示 显存 在内核之中申请一块内存作为显存 由于内核
  • 使用请求队列实验

    关于块设备架构就讲解这些 接下来我们使用开发板上的 RAM 模拟一段块设备 也就是ramdisk 然后编写块设备驱动 首先是传统的使用请求队列的时候 也就是针对机械硬盘的时候如何编写驱动 先分段分析一下驱动代码 1 重要的数据结构及宏定义
  • platform 设备驱动实验

    目录 Linux 驱动的分离与分层 驱动的分隔与分离 驱动的分层 platform 平台驱动模型简介 platform 总线 platform 驱动 platform 设备 硬件原理图分析 试验程序编写 platform 设备与驱动程序编写
  • Macronix MX25L25645G NOR Flash无法擦除问题分析

    1 问题现象描述 处理器使用的 SAM9X60 使用的内核版本是 5 10 80 在调试 Macronix MX25L25645G NOR Flash时 发现flash驱动加载成功后 使用 mtd debug 工具 erase flash时
  • RK3568 CAN驱动更新说明

    RK3568 CAN问题 同时收发数据一段时间 几秒钟 can出现错误收发功能异常 必须重新down up恢复正常 内核更新rockchip canfd c iopoll h 配置Networking support gt CAN bus
  • 32位/64位WINDOWS驱动之-突破进程保护映射的方法进行跨进程读内存2

    32位 64位WINDOWS驱动之 突破进程保护映射的方法进行跨进程读内存2 一 在过保护读写筛选器中添加 读写驱动2 c 驱动层 代码如下 include
  • rt-thread中使用WebClient WebNet总结 http学习

    HTTP学习资料 1 需求背景 WebClient主要用来传输文件 WebNet用来支持cgi接口 需要支持get post put delete方式 2 webnet中使用 2 1 webnet存在问题 2 11 rt thread 使用
  • <Linux开发>驱动开发 -之- Linux LCD 驱动

    Linux开发 驱动开发 之 Linux LCD 驱动 交叉编译环境搭建 Linux开发 linux开发工具 之 交叉编译环境搭建 uboot移植可参考以下 Linux开发 之 系统移植 uboot移植过程详细记录 第一部分 Linux开发
  • Windows驱动开发(一)第一个驱动程序

    首先我们需要了解 在操作系统中 是分两种权限的 一种是内核态 我们也称为0环 一种是用户态 称之为3环 而在我们的电脑中 驱动程序是运行在内核态的 这意味着和操作系统内核是在同一权限的 而普通的应用程序的权限是最低的 高权限谁不想拥有呢 因
  • 以字符串形式接收数字(uart)

    我正在尝试通过 uart 接收一个包装为字符串的数字 我发送数字 1000 所以我得到 4 个字节 空字符 但是 当我使用 atoi 将数组转换为数字并将整数与 1000 进行比较时 我并不总是得到正确的数字 这是我用于接收号码的中断处理函
  • Gem5 中与 ARM 裸机的 UART 通信

    我目前正在使用 Gem5 我必须通过 UART 从我的主机访问 ARMv8 裸机选项 所以我尝试了很多方法 但我还没有准备好 您能否让我知道 如何在裸机类型编程中将主机的串行端口映射到 ARMv8 的串行端口 任何帮助 将不胜感激 工作设置
  • 操作系统内部机制学习

    切换线程时需要保存什么 函数需要保存吗 函数在Flash上 不会被破坏 无需保存 函数执行到了哪里 需要保存吗 需要保存 全局变量需要保存吗 全局变量在内存上 无需保存 局部变量需要保存吗 局部变量在栈里 也是在内存里 只要避免栈不会被破坏
  • linux应用程序直接return与exit的区别

    在Linux应用程序中 可以使用 return 语句直接从 main 函数返回 这将导致程序终止并返回给操作系统 然而 有时候使用 exit 函数比直接使用 return 语句更有优势 以下是一些原因 清理资源 exit 函数可以确保在程序
  • 从 Linux 用户空间设置 16550A UART 硬件 FIFO 中断级别

    我目前正在使用 16550 兼容的 UART 并且我希望能够更改 FIFO 中断触发级别 我在高 UART 负载下丢失字节 并且我想降低阈值 这是一个动力不足的嵌入式系统 当然 如果我愿意 我可以在 8250 port c 驱动程序中更改它
  • RT-Thread 内核基础(六)

    RT Thread内核配置示例 RT Thread的一个重要特性是高度可裁剪性 支持对内核进行精细调整 对组件进行灵活拆卸 配置主要是通过修改工程目录下的rtconfig h文件来进行 用户可以通过打开 关闭该文件中的宏定义来对代码进行条件
  • 跨线程操作无效:从创建它的线程以外的线程访问控制“textBox1”[重复]

    这个问题在这里已经有答案了 我想使用 UART 将温度值从微控制器发送到 C 接口并显示温度Label Content 这是我的微控制器代码 while 1 key scan get value of temp if Usart Data
  • 如何检测来自 QNX 中 ncurses 的屏幕调整大小事件?

    我无法配置为接收有关使用 ncurses QNX Momentics 更改终端大小的事件 我使用Putyy作为终端 通过COM端口传输数据 我的问题是如何实现使用远程终端时接收屏幕变化事件 FILE fcons fopen dev ser1

随机推荐