java concurrent 探秘

2023-10-27

java concurrent 探秘(转)

我们都知道,在JDK1.5之前,Java中要进行业务并发时,通常需要有程序员独立完成代码实现,当然也有一些开源的框架提供了这些功能,但是这些依然没有JDK自带的功能使用起来方便。而当针对高质量Java多线程并发程序设计时,为防止死蹦等现象的出现,比如使用java之前的wait()、notify()和synchronized等,每每需要考虑性能、死锁、公平性、资源管理以及如何避免线程安全性方面带来的危害等诸多因素,往往会采用一些较为复杂的安全策略,加重了程序员的开发负担.万幸的是,在JDK1.5出现之后,Sun大神(Doug Lea)终于为我们这些可怜的小程序员推出了java.util.concurrent工具包以简化并发完成。开发者们借助于此,将有效的减少竞争条件(race conditions)和死锁线程。concurrent包很好的解决了这些问题,为我们提供了更实用的并发程序模型。


Executor :具体Runnable任务的执行者。
ExecutorService :一个线程池管理者,其实现类有多种,我会介绍一部分。我们能把Runnable,Callable提交到池中让其调度。
Semaphore :一个计数信号量
ReentrantLock :一个可重入的互斥锁定 Lock,功能类似synchronized,但要强大的多。
Future :是与Runnable,Callable进行交互的接口,比如一个线程执行结束后取返回的结果等等,还提供了cancel终止线程。
BlockingQueue :阻塞队列。
CompletionService : ExecutorService的扩展,可以获得线程执行结果的
CountDownLatch :一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
CyclicBarrier :一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点
Future :Future 表示异步计算的结果。
ScheduledExecutorService :一个 ExecutorService,可安排在给定的延迟后运行或定期执行的命令。

接下来逐一介绍

Executors主要方法说明
newFixedThreadPool(固定大小线程池)
创建一个可重用固定线程集合的线程池,以共享的无界队列方式来运行这些线程(只有要请求的过来,就会在一个队列里等待执行)。如果在关闭前的执行期间由于失败而导致任何线程终止,那么一个新线程将代替它执行后续的任务(如果需要)。

newCachedThreadPool(无界线程池,可以进行自动线程回收)
创建一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们。对于执行很多短期异步任务的程序而言,这些线程池通常可提高程序性能。调用 execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。因此,长时间保持空闲的线程池不会使用任何资源。注意,可以使用 ThreadPoolExecutor 构造方法创建具有类似属性但细节不同(例如超时参数)的线程池。

newSingleThreadExecutor(单个后台线程)
创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该线程。(注意,如果因为在关闭前的执行期间出现失败而终止了此单个线程,那么如果需要,一个新线程将代替它执行后续的任务)。可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是活动的。与其他等效的 newFixedThreadPool(1) 不同,可保证无需重新配置此方法所返回的执行程序即可使用其他的线程。

这些方法返回的都是ExecutorService对象,这个对象可以理解为就是一个线程池。
这个线程池的功能还是比较完善的。可以提交任务submit()可以结束线程池shutdown()。

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class MyExecutor extends Thread {
private int index;
public MyExecutor(int i){
this.index=i;
}
public void run(){
try{
System.out.println("["+this.index+"] start....");
Thread.sleep((int)(Math.random()*1000));
System.out.println("["+this.index+"] end.");
}
catch(Exception e){
e.printStackTrace();
}
}

public static void main(String args[]){
ExecutorService service=Executors.newFixedThreadPool(4);
for(int i=0;i<10;i++){
service.execute(new MyExecutor(i));
//service.submit(new MyExecutor(i));
}
System.out.println("submit finish");
service.shutdown();
}
}

虽然打印了一些信息,但是看的不是非常清晰,这个线程池是如何工作的,我们来将休眠的时间调长10倍。
Thread.sleep((int)(Math.random()*10000));

再来看,会清楚看到只能执行4个线程。当执行完一个线程后,才会又执行一个新的线程,也就是说,我们将所有的线程提交后,线程池会等待执行完最后shutdown。我们也会发现,提交的线程被放到一个“无界队列里”。这是一个有序队列(BlockingQueue,这个下面会说到)。

另外它使用了Executors的静态函数生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。
这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。
如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像通用的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。


这个就是线程池基本用法。

Semaphore
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。

Semaphore 通常用于限制可以访问某些资源(物理或逻辑的)的线程数目。例如,下面的类使用信号量控制对内容池的访问:

这里是一个实际的情况,大家排队上厕所,厕所只有两个位置,来了10个人需要排队。

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

public class MySemaphore extends Thread {
Semaphore position;
private int id;
public MySemaphore(int i,Semaphore s){
this.id=i;
this.position=s;
}

public void run(){
try{
if(position.availablePermits()>0){
System.out.println("顾客["+this.id+"]进入厕所,有空位");
}
else{
System.out.println("顾客["+this.id+"]进入厕所,没空位,排队");
}
position.acquire();
System.out.println("顾客["+this.id+"]获得坑位");
Thread.sleep((int)(Math.random()*1000));
System.out.println("顾客["+this.id+"]使用完毕");
position.release();
}
catch(Exception e){
e.printStackTrace();
}
}
public static void main(String args[]){
ExecutorService list=Executors.newCachedThreadPool();
Semaphore position=new Semaphore(2);
for(int i=0;i<10;i++){
list.submit(new MySemaphore(i+1,position));
}
list.shutdown();
position.acquireUninterruptibly(2);
System.out.println("使用完毕,需要清扫了");
position.release(2);
}
}



ReentrantLock
一个可重入的互斥锁定 Lock,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁定相同的一些基本行为和语义,但功能更强大。

ReentrantLock 将由最近成功获得锁定,并且还没有释放该锁定的线程所拥有。当锁定没有被另一个线程所拥有时,调用 lock 的线程将成功获取该锁定并返回。如果当前线程已经拥有该锁定,此方法将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。

此类的构造方法接受一个可选的公平参数。
当设置为 true时,在多个线程的争用下,这些锁定倾向于将访问权授予等待时间最长的线程。否则此锁定将无法保证任何特定访问顺序。
与采用默认设置(使用不公平锁定)相比,使用公平锁定的程序在许多线程访问时表现为很低的总体吞吐量(即速度很慢,常常极其慢),但是在获得锁定和保证锁定分配的均衡性时差异较小。不过要注意的是,公平锁定不能保证线程调度的公平性。因此,使用公平锁定的众多线程中的一员可能获得多倍的成功机会,这种情况发生在其他活动线程没有被处理并且目前并未持有锁定时。还要注意的是,未定时的 tryLock 方法并没有使用公平设置。因为即使其他线程正在等待,只要该锁定是可用的,此方法就可以获得成功。

建议总是 立即实践,使用 try 块来调用 lock,在之前/之后的构造中,最典型的代码如下:
class X {
private final ReentrantLock lock = new ReentrantLock();
// ...

public void m() {
lock.lock(); // block until condition holds
try {
// ... method body
} finally {
lock.unlock()
}
}
}

我的例子:
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantLock;

public class MyReentrantLock extends Thread{
TestReentrantLock lock;
private int id;
public MyReentrantLock(int i,TestReentrantLock test){
this.id=i;
this.lock=test;
}

public void run(){
lock.print(id);
}

public static void main(String args[]){
ExecutorService service=Executors.newCachedThreadPool();
TestReentrantLock lock=new TestReentrantLock();
for(int i=0;i<10;i++){
service.submit(new MyReentrantLock(i,lock));
}
service.shutdown();
}
}
class TestReentrantLock{
private ReentrantLock lock=new ReentrantLock();
public void print(int str){
try{
lock.lock();
System.out.println(str+"获得");
Thread.sleep((int)(Math.random()*1000));
}
catch(Exception e){
e.printStackTrace();
}
finally{
System.out.println(str+"释放");
lock.unlock();
}
}
}

BlockingQueue
支持两个附加操作的 Queue,这两个操作是:检索元素时等待队列变为非空,以及存储元素时等待空间变得可用。

BlockingQueue 不接受 null 元素。试图 add、put 或 offer 一个 null 元素时,某些实现会抛出 NullPointerException。null 被用作指示 poll 操作失败的警戒值。

BlockingQueue 可以是限定容量的。它在任意给定时间都可以有一个 remainingCapacity,超出此容量,便无法无阻塞地 put 额外的元素。
没有任何内部容量约束的 BlockingQueue 总是报告 Integer.MAX_VALUE 的剩余容量。

BlockingQueue 实现主要用于生产者-使用者队列,但它另外还支持 Collection 接口。因此,举例来说,使用 remove(x) 从队列中移除任意一个元素是有可能的。
然而,这种操作通常不 会有效执行,只能有计划地偶尔使用,比如在取消排队信息时。

BlockingQueue 实现是线程安全的。所有排队方法都可以使用内部锁定或其他形式的并发控制来自动达到它们的目的。
然而,大量的 Collection 操作(addAll、containsAll、retainAll 和 removeAll)没有 必要自动执行,除非在实现中特别说明。
因此,举例来说,在只添加了 c 中的一些元素后,addAll(c) 有可能失败(抛出一个异常)。

BlockingQueue 实质上不 支持使用任何一种“close”或“shutdown”操作来指示不再添加任何项。
这种功能的需求和使用有依赖于实现的倾向。例如,一种常用的策略是:对于生产者,插入特殊的 end-of-stream 或 poison 对象,并根据使用者获取这些对象的时间来对它们进行解释。

下面的例子演示了这个阻塞队列的基本功能。

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;

public class MyBlockingQueue extends Thread {
public static BlockingQueue<String> queue = new LinkedBlockingQueue<String>(3);

private int index;

public MyBlockingQueue(int i) {
this.index = i;
}

public void run() {
try {
queue.put(String.valueOf(this.index));
System.out.println("{" + this.index + "} in queue!");
} catch (Exception e) {
e.printStackTrace();
}
}

public static void main(String args[]) {
ExecutorService service = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {
service.submit(new MyBlockingQueue(i));
}
Thread thread = new Thread() {
public void run() {
try {
while (true) {
Thread.sleep((int) (Math.random() * 1000));
if(MyBlockingQueue.queue.isEmpty())
break;
String str = MyBlockingQueue.queue.take();
System.out.println(str + " has take!");
}
} catch (Exception e) {
e.printStackTrace();
}
}
};
service.submit(thread);
service.shutdown();
}
}
---------------------执行结果-----------------
{0} in queue!
{1} in queue!
{2} in queue!
{3} in queue!
0 has take!
{4} in queue!
1 has take!
{6} in queue!
2 has take!
{7} in queue!
3 has take!
{8} in queue!
4 has take!
{5} in queue!
6 has take!
{9} in queue!
7 has take!
8 has take!
5 has take!
9 has take!

-----------------------------------------


CompletionService

将生产新的异步任务与使用已完成任务的结果分离开来的服务。生产者 submit 执行的任务。使用者 take 已完成的任务,
并按照完成这些任务的顺序处理它们的结果。例如,CompletionService 可以用来管理异步 IO ,执行读操作的任务作为程序或系统的一部分提交,
然后,当完成读操作时,会在程序的不同部分执行其他操作,执行操作的顺序可能与所请求的顺序不同。

通常,CompletionService 依赖于一个单独的 Executor 来实际执行任务,在这种情况下,
CompletionService 只管理一个内部完成队列。ExecutorCompletionService 类提供了此方法的一个实现。


import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class MyCompletionService implements Callable<String> {
private int id;

public MyCompletionService(int i){
this.id=i;
}
public static void main(String[] args) throws Exception{
ExecutorService service=Executors.newCachedThreadPool();
CompletionService<String> completion=new ExecutorCompletionService<String>(service);
for(int i=0;i<10;i++){
completion.submit(new MyCompletionService(i));
}
for(int i=0;i<10;i++){
System.out.println(completion.take().get());
}
service.shutdown();
}
public String call() throws Exception {
Integer time=(int)(Math.random()*1000);
try{
System.out.println(this.id+" start");
Thread.sleep(time);
System.out.println(this.id+" end");
}
catch(Exception e){
e.printStackTrace();
}
return this.id+":"+time;
}
}


CountDownLatch


一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。

用给定的计数 初始化 CountDownLatch。由于调用了 countDown() 方法,所以在当前计数到达零之前,await 方法会一直受阻塞。
之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。

CountDownLatch 是一个通用同步工具,它有很多用途。将计数 1 初始化的 CountDownLatch 用作一个简单的开/关锁存器,
或入口:在通过调用 countDown() 的线程打开入口前,所有调用 await 的线程都一直在入口处等待。
用 N 初始化的 CountDownLatch 可以使一个线程在 N 个线程完成某项操作之前一直等待,或者使其在某项操作完成 N 次之前一直等待。

CountDownLatch 的一个有用特性是,它不要求调用 countDown 方法的线程等到计数到达零时才继续,
而在所有线程都能通过之前,它只是阻止任何线程继续通过一个 await。
一下的例子是别人写的,非常形象。

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class TestCountDownLatch {
public static void main(String[] args) throws InterruptedException {
// 开始的倒数锁
final CountDownLatch begin = new CountDownLatch(1);
// 结束的倒数锁
final CountDownLatch end = new CountDownLatch(10);
// 十名选手
final ExecutorService exec = Executors.newFixedThreadPool(10);

for (int index = 0; index < 10; index++) {
final int NO = index + 1;
Runnable run = new Runnable() {
public void run() {
try {
begin.await();//一直阻塞
Thread.sleep((long) (Math.random() * 10000));
System.out.println("No." + NO + " arrived");
} catch (InterruptedException e) {
} finally {
end.countDown();
}
}
};
exec.submit(run);
}
System.out.println("Game Start");
begin.countDown();
end.await();
System.out.println("Game Over");
exec.shutdown();
}
}
CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。


CyclicBarrier

一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。
在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环 的 barrier。

CyclicBarrier 支持一个可选的 Runnable 命令,在一组线程中的最后一个线程到达之后(但在释放所有线程之前),
该命令只在每个屏障点运行一次。若在继续所有参与线程之前更新共享状态,此屏障操作 很有用。

示例用法:下面是一个在并行分解设计中使用 barrier 的例子,很经典的旅行团例子:
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestCyclicBarrier {
// 徒步需要的时间: Shenzhen, Guangzhou, Shaoguan, Changsha, Wuhan
private static int[] timeWalk = { 5, 8, 15, 15, 10 };
// 自驾游
private static int[] timeSelf = { 1, 3, 4, 4, 5 };
// 旅游大巴
private static int[] timeBus = { 2, 4, 6, 6, 7 };

static String now() {
SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");
return sdf.format(new Date()) + ": ";
}

static class Tour implements Runnable {
private int[] times;
private CyclicBarrier barrier;
private String tourName;
public Tour(CyclicBarrier barrier, String tourName, int[] times) {
this.times = times;
this.tourName = tourName;
this.barrier = barrier;
}
public void run() {
try {
Thread.sleep(times[0] * 1000);
System.out.println(now() + tourName + " Reached Shenzhen");
barrier.await();
Thread.sleep(times[1] * 1000);
System.out.println(now() + tourName + " Reached Guangzhou");
barrier.await();
Thread.sleep(times[2] * 1000);
System.out.println(now() + tourName + " Reached Shaoguan");
barrier.await();
Thread.sleep(times[3] * 1000);
System.out.println(now() + tourName + " Reached Changsha");
barrier.await();
Thread.sleep(times[4] * 1000);
System.out.println(now() + tourName + " Reached Wuhan");
barrier.await();
} catch (InterruptedException e) {
} catch (BrokenBarrierException e) {
}
}
}

public static void main(String[] args) {
// 三个旅行团
CyclicBarrier barrier = new CyclicBarrier(3);
ExecutorService exec = Executors.newFixedThreadPool(3);
exec.submit(new Tour(barrier, "WalkTour", timeWalk));
exec.submit(new Tour(barrier, "SelfTour", timeSelf));
//当我们把下面的这段代码注释后,会发现,程序阻塞了,无法继续运行下去。
exec.submit(new Tour(barrier, "BusTour", timeBus));
exec.shutdown();
}
}

CyclicBarrier最重要的属性就是参与者个数,另外最要方法是await()。当所有线程都调用了await()后,就表示这些线程都可以继续执行,否则就会等待。

Future

Future 表示异步计算的结果。它提供了检查计算是否完成的方法,以等待计算的完成,并检索计算的结果。
计算完成后只能使用 get 方法来检索结果,如有必要,计算完成前可以阻塞此方法。取消则由 cancel 方法来执行。
还提供了其他方法,以确定任务是正常完成还是被取消了。一旦计算完成,就不能再取消计算。
如果为了可取消性而使用 Future但又不提供可用的结果,则可以声明 Future<?> 形式类型、并返回 null 作为基础任务的结果。

这个我们在前面CompletionService已经看到了,这个Future的功能,而且这个可以在提交线程的时候被指定为一个返回对象的。


ScheduledExecutorService

一个 ExecutorService,可安排在给定的延迟后运行或定期执行的命令。

schedule 方法使用各种延迟创建任务,并返回一个可用于取消或检查执行的任务对象。scheduleAtFixedRate 和 scheduleWithFixedDelay 方法创建并执行某些在取消前一直定期运行的任务。

用 Executor.execute(java.lang.Runnable) 和 ExecutorService 的 submit 方法所提交的命令,通过所请求的 0 延迟进行安排。
schedule 方法中允许出现 0 和负数延迟(但不是周期),并将这些视为一种立即执行的请求。

所有的 schedule 方法都接受相对 延迟和周期作为参数,而不是绝对的时间或日期。将以 Date 所表示的绝对时间转换成要求的形式很容易。
例如,要安排在某个以后的日期运行,可以使用:schedule(task, date.getTime() - System.currentTimeMillis(), TimeUnit.MILLISECONDS)。
但是要注意,由于网络时间同步协议、时钟漂移或其他因素的存在,因此相对延迟的期满日期不必与启用任务的当前 Date 相符。
Executors 类为此包中所提供的 ScheduledExecutorService 实现提供了便捷的工厂方法。

一下的例子也是网上比较流行的。

import static java.util.concurrent.TimeUnit.SECONDS;
import java.util.Date;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;

public class TestScheduledThread {
public static void main(String[] args) {
final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(2);
final Runnable beeper = new Runnable() {
int count = 0;

public void run() {
System.out.println(new Date() + " beep " + (++count));
}
};
// 1秒钟后运行,并每隔2秒运行一次
final ScheduledFuture beeperHandle = scheduler.scheduleAtFixedRate(beeper, 1, 2, SECONDS);
// 2秒钟后运行,并每次在上次任务运行完后等待5秒后重新运行
final ScheduledFuture beeperHandle2 = scheduler.scheduleWithFixedDelay(beeper, 2, 5, SECONDS);
// 30秒后结束关闭任务,并且关闭Scheduler
scheduler.schedule(new Runnable() {
public void run() {
beeperHandle.cancel(true);
beeperHandle2.cancel(true);
scheduler.shutdown();
}
}, 30, SECONDS);
}
}

这样我们就把concurrent包下比较重要的功能都已经总结完了,希望对我们理解能有帮助。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

java concurrent 探秘 的相关文章

  • 【Python小游戏】当当当当 万众瞩目得《滑雪大冒险》来啦~(附源码)

    前文 大家好 我是梨子同学 希望大家多多支持我 哈哈 为了感谢每一个关注我的小可爱 每篇文章的项目源码都是无偿分享滴 见文末 很多csdn的功能还在研究中 还有小编的文笔不好勿怪 会慢慢进步跟大家一起学习的 小编也一直在学习编程 如果代码小
  • unity期末作业-插针游戏

    unity期末作业 插针游戏 附下载链接 鼠标控制针的发射 圆盘可以显示接住的针数目 若两根针碰到则界面变红 游戏结束 详细情况如下动态图 点我下载 https download csdn net download weixin 43474
  • Unity小游戏-勇闯小岛(PC) 项目展示+完整项目源码

    游戏录像 游戏玩法 主角可以变换四种状态 玩家通过四种状态特有的技能来击败眼前的怪物闯关 切换到棕色 有一个一直围绕自己旋转的大摆斧攻击敌人 切换到绿色 可以抵挡一切的投掷物 但是无法攻击敌人 切换到粉色 切换瞬间可以发出飞镖 切换到蓝色
  • leetcode-跳跃游戏系列

    1 跳跃游戏 leetcode 55 跳跃游戏 1 问题描述 给定一个非负整数数组 n u m s nums nums 你最初位于数组的 第一个下标 数组中的每个元素代表你在该位置可以跳跃的最大长度 判断你是否能够到达最后一个下标 示例 1
  • 俄罗斯方块游戏(C语言)

    简介 俄罗斯方块 Tetris 是一款经典的游戏 下面是用C语言实现俄罗斯方块的示例代码 code include
  • CocosCreator列表scrollview滑动速度的修改,鼠标滚动速度修改

    由于cocos creator 在pc端 使用scrollview 鼠标滚动速度太慢 原文地址 CocosCreator列表滑动速度的修改 简书CocosCreator列表滑动速度的修改 简书引擎版本 2 2 2 之后升级的2 4 0直接可
  • 「Bomkus 博士的试炼」排行榜规则更新

    亲爱的玩家们 为了回应我们从社区收到的宝贵反馈 我们希望与大家分享我们为防止在 Bomkus 博士的试炼 排行榜中作弊而采取的措施的最新进展 并就这一主题提供更多说明 除了在活动开始前采取的反作弊措施外 我们还根据观察到的和报告的行为在整个
  • 秋招内推码汇总:2024届 游戏公司

    给24届秋招的同学整理了一批秋招内推码 有需要的同学请自取 PS 内推码来自 内推鸭小程序 完美世界 内推码 NTAHVOH 巨人网络 内推码 NTAX3AU 诗悦网络 内推码 NTANdQx 网龙 内推码 EVBMJ3 西山居 内推码 N
  • 华为OD机试真题-游戏分组-2023年OD统一考试(C卷)

    题目描述 部门准备举办一场王者荣耀表演赛 有10名游戏爱好者参与 分为两队 每队5人 每位参与者都有一个评分 代表着他的游戏水平 为了表演赛尽可能精彩 我们需要把10名参赛者分为实力尽量相近的两队 一队的实力可以表示为这一队5名队员的评分总
  • 利用阿里云的尖端数据库解决方案增强游戏数据管理

    在快节奏和动态的游戏世界中 对于努力为玩家提供无缝体验的公司来说 管理大量数据是一项关键挑战 阿里云是亚太地区的主要参与者 也是全球公认的运营数据库管理系统领导者 提供量身定制的创新解决方案 以应对游戏公司面临的独特数据管理挑战 这篇博客探
  • Metasequoia4 for Mac/win:带您进入三维模型游戏建模的新世界!

    在当今游戏行业中 三维模型的重要性无可置疑 而在这个充满创造力和无限可能的领域中 Metasequoia4 简称M4 无疑是您的最佳选择 作为一款专业的三维模型游戏建模软件 M4凭借其强大的功能和简便易用的界面 成为了无数游戏开发者和设计师
  • Metasequoia4 for Mac/win:带您进入三维模型游戏建模的新世界!

    在当今游戏行业中 三维模型的重要性无可置疑 而在这个充满创造力和无限可能的领域中 Metasequoia4 简称M4 无疑是您的最佳选择 作为一款专业的三维模型游戏建模软件 M4凭借其强大的功能和简便易用的界面 成为了无数游戏开发者和设计师
  • 坦克大战(二)

    欢迎来到程序小院 坦克大战 二 玩法 键盘 A W S D 键来控制方向 空格键发射子弹 N 下一关 P 上一关 Enter 开始 赶紧去闯关吧 开始游戏 https www ormcc com play gameStart 221 htm
  • U3D游戏开发中摇杆的制作(UGUI版)

    在PC端模拟摇杆 实现玩家通过控制摇杆让玩家移动 以下是完整代码 using System Collections using System Collections Generic using UnityEngine using Unity
  • 游戏开发常见操作梳理之NPC任务系统

    多数游戏存在任务系统 接下来介绍通过NPC触发任务的游戏制作代码 using System Collections using System Collections Generic using UnityEngine
  • 游戏开发创建操作之玩家信息系统的建立

    游戏一般都需要玩家信息系统 那么我们应该如何搭建玩家信息系统 接下来我将展示一种简单的方法 完整代码如下 using System Collections using System Collections Generic using Uni
  • 游戏开发常见操作梳理之角色选择一

    进入游戏后 我们经常会进入角色选择的界面 通常是左右两个按钮可以更改角色供玩家选择 对于这种界面我们通常使用数据持久化将角色信息存储起来 接下来的笔记中 我将使用自带的数据持久化系统对其进行操作 实现角色的选择页面 后续会更新xml系列的文
  • 游戏开发常用实践操作之按动任意键触发

    接下来一些笔记会对于一些大大小小的实践操作进行记录 希望对你有所帮助 在游戏中 我们经常会遇到一些按动任意键触发的操作 接下来展示核心代码 以下是对于Unity中的操作 使用的UI是NGUI 对于核心操作没有影响 你可以自己置换 void
  • 申泰勇教练的独家人物化身系列即将登陆 The Sandbox

    申泰勇 Shin Tae yong 教练是足球界的传奇人物 他来到 The Sandbox 推出了自己的专属人物化身系列 作为前 K 联赛中场球员和印尼队取得历史性成就的幕后教练 他的传奇经历现在已经影响到了虚拟世界 向过去 现在和未来致敬
  • 计算机Java项目|java游戏账号交易系统

    作者简介 Java领域优质创作者 CSDN博客专家 CSDN内容合伙人 掘金特邀作者 阿里云博客专家 51CTO特邀作者 多年架构师设计经验 腾讯课堂常驻讲师 主要内容 Java项目 Python项目 前端项目 人工智能与大数据 简历模板

随机推荐

  • day-51 代码随想录算法训练营(19)动态规划 part 12

    309 买卖股票的最佳时机含冷冻期 分析 状态 gt 持有 卖出 冷冻期 冷冻期后没持有 思路 1 dp存储 四个状态 2 dp i 0 dp i 1 dp i 2 dp i 3 3 初始化 dp 0 0 prices i 4 遍历顺序 1
  • 机器学习---结课论文

    机器学习与隐私保护 结课论文 时间序列数据的隐私保护机器学习方法与挑战 摘 要 随着大数据时代的到来 时间序列数据在各个领域被广泛应用 然而 如何在利用这些数据的同时保护用户隐私成为了一个亟待解决的问题 本文回顾了时间序列数据的基本概念及其
  • Docker 教程

    Docker 教程 1 Docker 的优点 2 Ubuntu Docker 安装 3 Docker 使用 3 1 Docker Hello World 3 1 1 运行交互式的容器 3 1 2 启动容器 后台模式 3 1 3 停止容器 3
  • linux称手的终端管理器Zsh(Z shell)-图文安装超详细

    linux默认的shell太low了 iTerm2在macOS系统简直堪称终端管理神器 有一款可以平替iTem2的软件 Zsh Z shell Zsh 是一个为交互使用而设计的 shell 一 安装Zsh 1 yum安装zsh yum in
  • redis的安装与启动(Windows)

    下载地址 https github com MSOpenTech redis releases Redis 支持 32 位和 64 位 这个需要根据你系统平台的实际情况选择 这里我们下载 Redis x64 xxx zip压缩包到 C 盘
  • <(* ̄▽ ̄*)/低碳生活管理系统

    首次在博客园发布文章 都是个人理解 有很多不足 多多包涵 下面是对做过的作业低碳生活管理系统的剖析 一 建类 二 在Program 或自己命名的类 里调用SQL命名空间 三 Main方法的准备 四 创建主界面方法 五 创建显示碳消耗列表的方
  • 使用OpenCV+Python进行人脸识别

    先决条件 对图像分类的基本理解 Python 和深度学习知识 对深度学习中各种模块的概念理解 介绍 在这篇文章中 我们将看看什么是人脸识别 以及它与人脸检测有何不同 我们先简单了解一下人脸识别的原理 然后跳转到编码部分 在本文的最后 你将能
  • 彻底搞懂 ES6/ES2015 JS 语法

    目录 一 ES6 标准介绍 二 最常用的ES6 特性 1 let const 2 class extends super 3 arrow function 4 template string 5 destructuring 6 defaul
  • 实用技巧分享——Python函数添加执行超时检查功能

    某些常用的库如requests的get 函数 具有特定的参数timeout 设置后可以在其运行超过一定时间还没运行完成时抛出超时错误 而如果我们想为自定义函数也添加类似的 闹钟 超时检查功能 最简单的方式是使用第三方库wrapt timeo
  • 前端开发推荐两个开发工具vs code和webstorm

    前端开发推荐两个开发工具vs code和webstorm 1 vs code 相比java和c 安卓等开发 前端可以使用更轻量的工具来进行开发 vs code是微软的 和一般常用软件 qq 微信 淘宝等 很容易安装 就在电脑管家里面就可以下
  • 【运维篇】三、SLF4J与Logback

    文章目录 0 Java的门面设计模式 1 SLF4J 2 作用 3 调试 4 SpringBoot采用SLF4J Logback 5 切换SpringBoot的日志框架 6 logback的配置加载 7 logback的配置组成 8 log
  • IntelliJ IDEA 2017.2永久破解

    针对新版的IntelliJ IDEA 笔者的版本是2017 2 提供一种新的破解方法 用此种方法破解的有效期到2099年12月31日 读者们听着心里是不是有点小激动 下面我来讲述破解的详细过程 其实不复杂 1 从下面地址下载一个jar包 名
  • chatGPT网站报错:Sorry,you have been blocked

    打开charGPT网站突然进不去 显示 Sorry you have been blocked 尝试清理了chatGPT网站的cookie数据 还是不行 最后解决方法 关掉网站 换一个VPN国家 再次打开网站 登录进入成功
  • 服务器设置虚拟ip,服务器设置虚拟ip

    服务器设置虚拟ip 内容精选 换一换 通过华为云创建的ECS服务器默认使用华为云提供的内网DNS进行解析 内网DNS不影响ECS服务器对公网域名的访问 同时 还可以不经Internet 直接通过内网DNS访问其他云上服务内部地址 如OBS
  • 删除文件夹以及文件夹内容

    date 2009 10 26 用途 删除文件夹 public static void delFolder String folderPath try File file new File folderPath if file exists
  • Vue入门todolist组件

    div div
  • java 注解值_java 注解默认值操作

    我就废话不多说了 大家还是直接看代码吧 package com zejian annotationdemo import java lang annotation ElementType import java lang annotatio
  • 【Peter Dayan】自然和人工强化学习的结合、以及未来的发展方向

    深度强化学习实验室 官网 http www neurondance com 论坛 http deeprl neurondance com 来源 AI科技评论 作者 Mr Bear 青暮 德国马克斯 普朗克生物控制论研究所所长Peter Da
  • 关于对doCreateBean方法下的的createBeanInstance方法的分析

    一 前言 最近在看Spring的相关源码 这次来分析一下createBeanInstance 方法 在getBean 的时候调用了doGetBean 而doGetBean 内最为核心的就是doCreateBean 方法 在doCreateB
  • java concurrent 探秘

    java concurrent 探秘 转 我们都知道 在JDK1 5之前 Java中要进行业务并发时 通常需要有程序员独立完成代码实现 当然也有一些开源的框架提供了这些功能 但是这些依然没有JDK自带的功能使用起来方便 而当针对高质量Jav