Java并发编程实战——java内存模型(JMM)和重排序数据依赖性规则

2023-10-30

JMM的介绍

当多个线程访问同一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替运行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获取正确的结果,那这个对象是线程安全的。

出现线程安全的问题一般是因为主内存和工作内存数据不一致性和重排序导致的,而解决线程安全的问题最重要的就是理解这两种问题是怎么来的,那么,理解它们的核心在于理解java内存模型(JMM)

在多线程条件下,多个线程肯定会相互协作完成一件事情,一般来说就会涉及到多个线程间相互通信告知彼此的状态以及当前的执行结果等,另外,为了性能优化,还会涉及到编译器指令重排序和处理器指令重排序。下面会一一来聊聊这些知识。

内存模型抽象结构

在并发编程中主要需要解决两个问题:

  1. 线程之间如何通信;
  2. 线程之间如何完成同步(这里的线程指的是并发执行的活动实体)。

通信是指线程之间以何种机制来交换信息,主要有两种:共享内存和消息传递

java内存模型是共享内存的并发模型,线程之间主要通过读-写共享变量来完成隐式通信。如果程序员不能理解Java的共享内存模型在编写并发程序时一定会遇到各种各样关于内存可见性的问题。

哪些是共享变量

  • 在java程序中所有实例域,静态域和数组元素都是放在堆内存中(所有线程均可访问到,是可以共享的),而局部变量,方法定义参数和异常处理器参数不会在线程间共享。共享数据会出现线程安全的问题,而非共享数据不会出现线程安全的问题。关于JVM运行时内存区域在后面的文章会讲到。

JMM抽象结构模型

我们知道CPU的处理速度和主存的读写速度不是一个量级的,为了平衡这种巨大的差距,每个CPU都会有缓存。因此,共享变量会先放在主存中,每个线程都有属于自己的工作内存,并且会把位于主存中的共享变量拷贝到自己的工作内存,之后的读写操作均使用位于工作内存的变量副本,并在某个时刻将工作内存的变量副本写回到主存中去。JMM就从抽象层次定义了这种方式,并且JMM决定了一个线程对共享变量的写入何时对其他线程是可见的。
在这里插入图片描述

如图为JMM抽象示意图,线程A和线程B之间要完成通信的话,要经历如下两步:

  1. 线程A从主内存中将共享变量读入线程A的工作内存后并进行操作,之后将数据重新写回到主内存中;
  2. 线程B从主存中读取最新的共享变量

从横向去看看,线程A和线程B就好像通过共享变量在进行隐式通信。这其中有很有意思的问题,如果线程A更新后数据并没有及时写回到主存,而此时线程B读到的是过期的数据,这就出现了“脏读”现象。可以通过同步机制(控制不同线程间操作发生的相对顺序)来解决或者通过volatile关键字使得每次volatile变量都能够强制刷新到主存,从而对每个线程都是可见的。

重排序的数据依赖性

一个好的内存模型实际上会放松对处理器和编译器规则的束缚,也就是说软件技术和硬件技术都为同一个目标而进行奋斗:在不改变程序执行结果的前提下,尽可能提高并行度。JMM对底层尽量减少约束,使其能够发挥自身优势。因此,在执行程序时,为了提高性能,编译器和处理器常常会对指令进行重排序。一般重排序可以分为如下三种:
在这里插入图片描述

  • 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序;
  • 指令级并行的重排序。现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序;
  • 内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行的。

那么什么情况下,不能进行重排序了?下面就来说说数据依赖性。有如下代码:

double pi = 3.14 //A

double r = 1.0 //B

double area = pi*r*r //C

这是一个计算圆面积的代码,由于A,B之间没有任何关系,对最终结果也不会存在关系,它们之间执行顺序可以重排序。因此可以执行顺序可以是A->B->C或者B->A->C执行最终结果都是3.14,即A和B之间没有数据依赖性。

但是A和C、B和C之间就有数据依赖性。具体的定义为:如果两个操作访问同一个变量,且这两个操作有一个为写操作,此时这两个操作就存在数据依赖性这里就存在三种情况:1. 读后写;2.写后写;3. 写后读三种操作都是存在数据依赖性的,如果重排序会对最终执行结果会存在影响。编译器和处理器在重排序时,会遵守数据依赖性,编译器和处理器不会改变存在数据依赖性关系的两个操作的执行顺序

happens-before规则

上面的内容讲述了重排序原则,一会是编译器重排序一会是处理器重排序,如果让程序员再去了解这些底层的实现以及具体规则,那么程序员的负担就太重了,严重影响了并发编程的效率。因此,JMM为程序员在上层提供了六条规则,这样我们就可以根据规则去推论跨线程的内存可见性问题,而不用再去理解底层重排序的规则。下面以两个方面来说。

happens-before定义
JSR-133使用happens-before的概念来指定两个操作之间的执行顺序。由于这两个操作可以在一个线程之内,也可以是在不同线程之间。因此,JMM可以通过happens-before关系向程序员提供跨线程的内存可见性保证(如果A线程的写操作a与B线程的读操作b之间存在happens-before关系,尽管a操作和b操作在不同的线程中执行,但JMM向程序员保证a操作将对b操作可见)。具体的定义为:

  1. 如果一个操作happens-before另一个操作,那么第一个操作的执行结果将对第二个操作可见,而且第一个操作的执行顺序排在第二个操作之前。
  2. 两个操作之间存在happens-before关系,并不意味着Java平台的具体实现必须要按照happens-before关系指定的顺序来执行。如果重排序之后的执行结果,与按happens-before关系来执行的结果一致,那么这种重排序并不非法(也就是说,JMM允许这种重排序)。

从程序员的角度来说,可以这样理解happens-before关系:如果A happens-before B,那么Java内存模型将向程序员保证——A操作的结果将对B可见,且A的执行顺序排在B之前。注意,这只是Java内存模型向程序员做出的保证!

正如前面所言,JMM其实是在遵循一个基本原则:只要不改变程序的执行结果(指的是单线程程序和正确同步的多线程程序),编译器和处理器怎么优化都行。JMM这么做的原因是:程序员对于这两个操作是否真的被重排序并不关心,程序员关心的是程序执行时的语义不能被改变(即执行结果不能被改变)。

具体规则可以做一个了解:

  1. 程序顺序规则:一个线程中的每个操作,happens-before于该线程中的任意后续操作。
  2. 监视器锁规则:对一个锁的解锁,happens-before于随后对这个锁的加锁。
  3. volatile变量规则:对一个volatile域的写,happens-before于任意后续对这个volatile域的读。
  4. 传递性:如果A happens-before B,且B happens-before C,那么A happens-before C。
  5. start()规则:如果线程A执行操作ThreadB.start()(启动线程B),那么A线程的ThreadB.start()操作happens-before于线程B中的任意操作。
  6. join()规则:如果线程A执行操作ThreadB.join()并成功返回,那么线程B中的任意操作happens-before于线程A从ThreadB.join()操作成功返回。
  7. 程序中断规则:对线程interrupted()方法的调用先行于被中断线程的代码检测到中断时间的发生。
  8. 对象finalize规则:一个对象的初始化完成(构造函数执行结束)先行于发生它的finalize()方法的开始。

内存屏障

内存屏障 (memory barrier) 确保,在屏障之后的操作开始执行之前,屏障之前的操作已经完成。所以这个东西叫做屏障(barrier),也有的地方叫栅栏(fence),意思就是它前后的指令不能穿越这个 barrier。它有两个作用:

  • 阻止屏障两侧的指令重排序
  • 强制把写缓冲区/高速缓存中的脏数据等写回主内存,让缓存中相应的数据失效

硬件层的内存屏障分为两种:Load Barrier 和 Store Barrier即读屏障和写屏障。

  • 对于Load Barrier来说,在指令前插入Load Barrier,可以让高速缓存中的数据失效,强制从新从主内存加载数据
  • 对于Store Barrier来说,在指令后插入Store Barrier,能让写入缓存中的最新数据更新写入主内存,让其他线程可见。

java的内存屏障通常所谓的四种即LoadLoad,StoreStore,LoadStore,StoreLoad实际上也是上述两种的组合,完成一系列的屏障和数据同步功能。

  1. LoadLoad屏障:对于这样的语句Load1; LoadLoad; Load2,在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。
  2. StoreStore屏障:对于这样的语句Store1; StoreStore; Store2,在Store2及后续写入操作执行前,保证Store1的写入操作对其它处理器可见。
  3. LoadStore屏障:对于这样的语句Load1; LoadStore; Store2,在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。
  4. StoreLoad屏障:对于这样的语句Store1; StoreLoad; Load2,在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能

volatile语义中的内存屏障

volatile的内存屏障策略非常严格保守,非常悲观且毫无安全感的心态

  • 在每个volatile写操作前插入StoreStore屏障,在写操作后插入StoreLoad屏障;
  • 在每个volatile读操作前插入LoadLoad屏障,在读操作后插入LoadStore屏障;

由于内存屏障的作用,避免了volatile变量和其它指令重排序、线程之间实现了通信,使得volatile表现出了锁的特性。

final语义中的内存屏障

对于final域,编译器和CPU会遵循两个排序规则:

  • 新建对象过程中,构造体中对final域的初始化写入和这个对象赋值给其他引用变量,这两个操作不能重排序;(废话嘛)
  • 初次读包含final域的对象引用和读取这个final域,这两个操作不能重排序;(晦涩,意思就是先赋值引用,再调用final值)

总之上面规则的意思可以这样理解,必需保证一个对象的所有final域被写入完毕后才能引用和读取。这也是内存屏障的起的作用:

  • 写final域:在编译器写final域完毕,构造体结束之前,会插入一个StoreStore屏障,保证前面的对final写入对其他线程/CPU可见,并阻止重排序。
  • 读final域:在上述规则2中,两步操作不能重排序的机理就是在读final域前插入了LoadLoad屏障。
    X86处理器中,由于CPU不会对写-写操作进行重排序,所以StoreStore屏障会被省略;而X86也不会对逻辑上有先后依赖关系的操作进行重排序,所以LoadLoad也会变省略。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Java并发编程实战——java内存模型(JMM)和重排序数据依赖性规则 的相关文章

  • java并发总结

    一 并发基础 1 进程与线程 进程 程序由指令和数据组成 但这些指令要运行 数据要读写 就必须将指令加载至 CPU 数据加载至内存 在指令运行过程中还需要用到磁盘 网络等设备 进程就是用来加载指令 管理内存 管理 IO 的 当一个程序被运行
  • 方法锁,对象锁,类锁的区别和用法

    在java编程中 经常需要用到同步 而用得最多的也许是synchronized关键字了 下面看看这个关键字的用法 因为synchronized关键字涉及到锁的概念 所以先来了解一些相关的锁知识 java的内置锁 每个java对象都可以用做一
  • 浅析多线程中的各种锁

    高并发的场景下 如果选对了合适的锁 则会大大提高系统的性能 否则性能会降低 所以 知道各种锁的开销 以及应用场景是很有必要的 文章目录 常用的各种锁 互斥锁与自旋锁 互斥锁 自旋锁 读写锁 乐观锁与悲观锁 本文小结 常用的各种锁 多线程访问
  • 【多线程】三种实现方案

    目录 1 多线程中的并发和并行概念 2 多线程中的进程和线程概念 3 多线程的实现方案 3 1 方式1 继承Thread类的方式进行实现 3 2 方式2 实现Runnable接口 3 3 方式3 Callble和Future 可以获取返回结
  • 单例模式的4种写法

    单例模式是开发过程中常用的模式之一 首先了解下单例模式的四大原则 构造方法私有 以静态方法或枚举返回实例 确保实例只有一个 尤其是多线程环境 确保反射或反序列化时不会重新构建对象 饿汉模式 饿汉模式在类被初始化时就创建对象 以空间换时间 故
  • 第十三章:QT多线程(QThread)

    回顾 第一章 Qt的概述 第二章 在Ubuntu编写第一个Qt程序 第三章 Qt的字符串和字符编码 第四章 Qt的信号和槽 第五章 Qt容器窗口 父窗口 第六章 面向对象的Qt编程 第七章 Qt设计师使用 designer 第八章 Qt创造
  • 多线程-Thread类的常用方法及使用场景

    众所周知 操作线程就必须熟读线程的API方法 万一你开个多线程刹不住车就歇菜了 下面就介绍一些API基本用法 包括sleep join yield interrupt sleep 让当前线程睡一会 原生用法Thread sleep 毫秒 会
  • 什么是ConcurrentHashMap?

    文章目录 什么是ConcurrentHashMap ConcurrentHashMap 的主要特性 ConcurrentHashMap 的用法 ConcurrentHashMap 的实现原理 在什么场景使用ConcurrentHashMap
  • 并发编程系列之volatile内存语义

    前言 前面介绍顺序一致性模型时 我们提到了程序如果正确的同步就会具备顺序一致性 这里所说的同步泛指广义上的同步 其中包括就包括同步原语volatile 那么volatile声明的变量为什么就能保证同步呢 这又是如何实现的呢 今天就让我们一起
  • MPI与main()程序中的其他函数执行次数

    我原先以为只有在MPI代码区域 即MPI Init argc argv 到MPI Finalize 中的代码才会涉及到进程通信的问题 但实际上在MPI区域外的代码依然受到影响 执行的次数与开启的进程数有关 为此可以使用MPI 秩 rank
  • JUC常用到的类

    JUC java util concurrent 并发包中包含了许多并发编程中需要用到的类 锁 如ReentratLock ReadWriteLock ReentrantLock重入锁 可以替代synchronized使用 并且有更多强大的
  • Callable接口详解

    Callable接口详解 Callable 返回结果并且可能抛出异常的任务 优点 可以获得任务执行返回值 通过与Future的结合 可以实现利用Future来跟踪异步计算的结果 Runnable和Callable的区别 1 Callable
  • Java并发之锁

    Java并发之锁 一 临界区 二 线程安全 三 解决临界区线程安全问题 四 Java对象头 五 重量级锁 Monitor 5 1 synchronized 5 1 1 synchronized加锁流程 六 轻量级锁 6 1 轻量级锁加锁流程
  • Java并发编程-第二章

    以下内容来自 Java并发编程 书籍第二章 补充 1 volatile的有序性 volatile通过内存屏障实现禁止指令重排序保证有序性 硬件层面的内存屏障分为Load Barrier 和 Store Barrier即读屏障和写屏障 2 同
  • 高并发,你真的理解透彻了吗?

    高并发 几乎是每个程序员都想拥有的经验 原因很简单 随着流量变大 会遇到各种各样的技术问题 比如接口响应超时 CPU load升高 GC频繁 死锁 大数据量存储等等 这些问题能推动我们在技术深度上不断精进 在过往的面试中 如果候选人做过高并
  • brpc源码解析(十七)—— bthread上的类futex同步组件butex详解

    文章目录 一 futex简介 二 butex源码解析 2 1 butex相关数据结构 2 2 butex主要机制 2 2 1 butex wait 2 2 2 butex wake 我们知道在linux 下 锁和其他一些同步机制都会用到fu
  • 接口并发性能测试开发之:从测试方案设计、测试策略、指标分析到代码编写,这一篇全搞定。

    并发接口性能设计思路与代码编写 1 引言 2 并发测试定义 3 并发测试分类 4 设计思路整理 5 测试方案设计 6 指标分析 7 代码实战 8 总结 1 引言 这篇是我3月份在公司内部做的技术分享内容 由于我在公司内部分享的内容较多 以及
  • Java并发编程之设计模式

    同步模式之保护性暂停 1 定义 即 Guarded Suspension 用在一个线程等待另一个线程的执行结果 要点 有一个结果需要从一个线程传递到另一个线程 让他们关联同一个 GuardedObject 如果有结果不断从一个线程到另一个线
  • 并发编程系列之自定义线程池

    前言 前面我们在讲并发工具类的时候 多次提到线程池 今天我们就来走进线程池的旅地 首先我们先不讲线程池框架Executors 我们今天先来介绍如何自己定义一个线程池 是不是已经迫不及待了 那么就让我们开启今天的旅途吧 什么是线程池 线程池可
  • Java线程(Thread)生命周期的6种状态

    当线程被创建并启动以后 它既不是一启动就进入了执行状态 也不是一直处于执行状态 在线程的生命周期中 可能处于不同的状态 java lang Thread State 列举出了这6种线程状态 线程状态 导致状态发生条件 New 新建 线程刚被

随机推荐