深度学习从入门到精通——基于深度学习的地震数据去噪处理

2023-11-01

在这里插入图片描述

  • 传统机器学习
    • SVM,boosting,bagging,knn
  • 深度学习
    • CNN(典型),GAN

地震应用方向

  • 叠前地震数据随机噪声去除,实现噪声分离
    didi
  • 面波去噪
    面波作为很强的干扰波出现在地震勘探中,大大降低了地震记录的分 辨率和信噪比。深度学习作为一种数据驱动类方法, 能够从大量数据样本中 学习得到有效信号与噪声的区别, 自适应建立深度神经网络来压制噪声。
    在这里插入图片描述
  • 地震数据去噪与重建
    在这里插入图片描述

去噪流程、

  • 去噪流程 - 深度学习常规流程
    在这里插入图片描述

数据增强

  • 利用数据增强方面,把地震波面波数据当作二维图像数据使用
  • 那么可采用数据增强方式,
  • 噪声类型添加
  • 仿射变换与透视变换,裁剪
  • 高级一点的:mixup,dropoutblock,mosaic,mask等等

模型设计

  • 模型设计首先清晰自己需要什么,如果我们做的是噪声去除,那么针对性的模型如下:
    ①目标检测类CNN模型
    首先清楚,地震波数据,无非是噪声数据与我想要的真实地震数据。
    含有噪声的数据 = 真实地震波 + 噪声
    那么模型的任务定义为目标侦测性,寻找里面的地震波或者是噪声。
  • 相对来说,真实地震波数据无论是在求取还是在标注性上,都更容易求取。因此让模型找出噪声数据,利用原始数据-噪声数据 = 真实地震波数据。
    这里的标签设置方法: 含噪数据,真实地震波数据
    ②图像分割类
    在这里插入图片描述

将地震波去噪任务分解为地震波+噪声,对含有噪声的地震波进行分类,对地震波数据进行提取,进而获取真实地震波。
③超分技术(GAN)
在这里插入图片描述

标签设置方法: 含噪数据,真实地震波数据
利用超分的思想来做去噪任务,针对性的求取去噪后的图像。利用生成器直接对图像进行去噪,比较典型的油SRGAN。
如果对地震波的噪声类型有判断,可以采用CGAN的思想,对噪声类型可控化。通过已知噪声类型的方式对地震波进行针对性的去噪。
③无监督去噪(VAE系类)
利用编解码模型,对原始数据进行压缩成向量,再通过向量解码成真实地震波。
以前常用,实际应用性还可以,但是可解释性需要进一步探讨。

编程实战

这里采用下面博主教程里面的进行解释。
bilibili参考

  • 对地震波数据的处理注意使用道的数据就好,其他的按照数据增强的方式走
  • 数据采样原则
    • 满足独立同分布的原理,可以的相同区块,但是不能的不同地方的数据。
    • 数据质量> 数据数量,采样质量一定要保证,数量不是最重要的。
    • 采样的标签制作,可以是(含噪数据,真实地震波),也可以是(含噪数据,噪声)
    • 分布均匀,不同情况下的噪声尽可能的考虑齐全,这样模型的鲁棒性才会比较好。针对区块,地质概况,可以针对性的制作一下。

数据展示如下

在这里插入图片描述

干净数据与含噪数据的展示

在这里插入图片描述

  • 模型的输入与输出
    地震波数据,可以定义成单通道图像,图像格式为NCHW(pytorch,paddle),NHWC(tensorflow)
    输出,如果是去噪任务,理论上输出与输入应该同型号,这里利用u2net修改了一下原up主的代码进行去噪任务。
    在这里插入图片描述
    mutiunet.py
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F

class REBNCONV(nn.Module):
    def __init__(self,in_ch=3,out_ch=3,dirate=1):
        super(REBNCONV,self).__init__()

        self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
        self.bn_s1 = nn.BatchNorm2d(out_ch)
        self.relu_s1 = nn.ReLU(inplace=True)

    def forward(self,x):

        hx = x
        xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))

        return xout

## upsample tensor 'src' to have the same spatial size with tensor 'tar'
def _upsample_like(src,tar):

    src = F.upsample(src,size=tar.shape[2:],mode='bilinear')

    return src


### RSU-7 ###
class RSU7(nn.Module):#UNet07DRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU7,self).__init__()

        self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)

        self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
        self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)

        self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)

        self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)

    def forward(self,x):

        hx = x
        hxin = self.rebnconvin(hx)

        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)

        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)

        hx3 = self.rebnconv3(hx)
        hx = self.pool3(hx3)

        hx4 = self.rebnconv4(hx)
        hx = self.pool4(hx4)

        hx5 = self.rebnconv5(hx)
        hx = self.pool5(hx5)

        hx6 = self.rebnconv6(hx)

        hx7 = self.rebnconv7(hx6)

        hx6d =  self.rebnconv6d(torch.cat((hx7,hx6),1))
        hx6dup = _upsample_like(hx6d,hx5)

        hx5d =  self.rebnconv5d(torch.cat((hx6dup,hx5),1))
        hx5dup = _upsample_like(hx5d,hx4)

        hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
        hx4dup = _upsample_like(hx4d,hx3)

        hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
        hx3dup = _upsample_like(hx3d,hx2)

        hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
        hx2dup = _upsample_like(hx2d,hx1)

        hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))

        return hx1d + hxin

### RSU-6 ###
class RSU6(nn.Module):#UNet06DRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU6,self).__init__()

        self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)

        self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
        self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)

        self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)

        self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)

    def forward(self,x):

        hx = x

        hxin = self.rebnconvin(hx)

        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)

        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)

        hx3 = self.rebnconv3(hx)
        hx = self.pool3(hx3)

        hx4 = self.rebnconv4(hx)
        hx = self.pool4(hx4)

        hx5 = self.rebnconv5(hx)

        hx6 = self.rebnconv6(hx5)


        hx5d =  self.rebnconv5d(torch.cat((hx6,hx5),1))
        hx5dup = _upsample_like(hx5d,hx4)

        hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
        hx4dup = _upsample_like(hx4d,hx3)

        hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
        hx3dup = _upsample_like(hx3d,hx2)

        hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
        hx2dup = _upsample_like(hx2d,hx1)

        hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))

        return hx1d + hxin

### RSU-5 ###
class RSU5(nn.Module):#UNet05DRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU5,self).__init__()

        self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)

        self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
        self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)

        self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)

        self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)

    def forward(self,x):

        hx = x

        hxin = self.rebnconvin(hx)

        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)

        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)

        hx3 = self.rebnconv3(hx)
        hx = self.pool3(hx3)

        hx4 = self.rebnconv4(hx)

        hx5 = self.rebnconv5(hx4)

        hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
        hx4dup = _upsample_like(hx4d,hx3)

        hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
        hx3dup = _upsample_like(hx3d,hx2)

        hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
        hx2dup = _upsample_like(hx2d,hx1)

        hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))

        return hx1d + hxin

### RSU-4 ###
class RSU4(nn.Module):#UNet04DRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU4,self).__init__()

        self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)

        self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
        self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
        self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)

        self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)

        self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)

    def forward(self,x):

        hx = x

        hxin = self.rebnconvin(hx)

        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)

        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)

        hx3 = self.rebnconv3(hx)

        hx4 = self.rebnconv4(hx3)

        hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
        hx3dup = _upsample_like(hx3d,hx2)

        hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
        hx2dup = _upsample_like(hx2d,hx1)

        hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))

        return hx1d + hxin

### RSU-4F ###
class RSU4F(nn.Module):#UNet04FRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU4F,self).__init__()

        self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)

        self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
        self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
        self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)

        self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)

        self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
        self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
        self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)

    def forward(self,x):

        hx = x

        hxin = self.rebnconvin(hx)

        hx1 = self.rebnconv1(hxin)
        hx2 = self.rebnconv2(hx1)
        hx3 = self.rebnconv3(hx2)

        hx4 = self.rebnconv4(hx3)

        hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
        hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
        hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))

        return hx1d + hxin


##### U^2-Net ####
class U2NET(nn.Module):

    def __init__(self,in_ch=3,out_ch=1):
        super(U2NET,self).__init__()

        self.stage1 = RSU7(in_ch,32,64)
        self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage2 = RSU6(64,32,128)
        self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage3 = RSU5(128,64,256)
        self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage4 = RSU4(256,128,512)
        self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage5 = RSU4F(512,256,512)
        self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage6 = RSU4F(512,256,512)

        # decoder
        self.stage5d = RSU4F(1024,256,512)
        self.stage4d = RSU4(1024,128,256)
        self.stage3d = RSU5(512,64,128)
        self.stage2d = RSU6(256,32,64)
        self.stage1d = RSU7(128,16,64)

        self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
        self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
        self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
        self.side6 = nn.Conv2d(512,out_ch,3,padding=1)

        self.outconv = nn.Conv2d(6,out_ch,1)

    def forward(self,x):

        hx = x

        #stage 1
        hx1 = self.stage1(hx)
        hx = self.pool12(hx1)

        #stage 2
        hx2 = self.stage2(hx)
        hx = self.pool23(hx2)

        #stage 3
        hx3 = self.stage3(hx)
        hx = self.pool34(hx3)

        #stage 4
        hx4 = self.stage4(hx)
        hx = self.pool45(hx4)

        #stage 5
        hx5 = self.stage5(hx)
        hx = self.pool56(hx5)

        #stage 6
        hx6 = self.stage6(hx)
        hx6up = _upsample_like(hx6,hx5)

        #-------------------- decoder --------------------
        hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
        hx5dup = _upsample_like(hx5d,hx4)

        hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
        hx4dup = _upsample_like(hx4d,hx3)

        hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
        hx3dup = _upsample_like(hx3d,hx2)

        hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
        hx2dup = _upsample_like(hx2d,hx1)

        hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))


        #side output
        d1 = self.side1(hx1d)

        d2 = self.side2(hx2d)
        d2 = _upsample_like(d2,d1)

        d3 = self.side3(hx3d)
        d3 = _upsample_like(d3,d1)

        d4 = self.side4(hx4d)
        d4 = _upsample_like(d4,d1)

        d5 = self.side5(hx5d)
        d5 = _upsample_like(d5,d1)

        d6 = self.side6(hx6)
        d6 = _upsample_like(d6,d1)

        d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))

        return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)

### U^2-Net small ###
class U2NETP(nn.Module):

    def __init__(self,in_ch=3,out_ch=1):
        super(U2NETP,self).__init__()

        self.stage1 = RSU7(in_ch,16,64)
        self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage2 = RSU6(64,16,64)
        self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage3 = RSU5(64,16,64)
        self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage4 = RSU4(64,16,64)
        self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage5 = RSU4F(64,16,64)
        self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)

        self.stage6 = RSU4F(64,16,64)

        # decoder
        self.stage5d = RSU4F(128,16,64)
        self.stage4d = RSU4(128,16,64)
        self.stage3d = RSU5(128,16,64)
        self.stage2d = RSU6(128,16,64)
        self.stage1d = RSU7(128,16,64)

        self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
        self.side6 = nn.Conv2d(64,out_ch,3,padding=1)

        self.outconv = nn.Conv2d(6,out_ch,1)

    def forward(self,x):

        hx = x

        #stage 1
        hx1 = self.stage1(hx)
        hx = self.pool12(hx1)

        #stage 2
        hx2 = self.stage2(hx)
        hx = self.pool23(hx2)

        #stage 3
        hx3 = self.stage3(hx)
        hx = self.pool34(hx3)

        #stage 4
        hx4 = self.stage4(hx)
        hx = self.pool45(hx4)

        #stage 5
        hx5 = self.stage5(hx)
        hx = self.pool56(hx5)

        #stage 6
        hx6 = self.stage6(hx)
        hx6up = _upsample_like(hx6,hx5)

        #decoder
        hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
        hx5dup = _upsample_like(hx5d,hx4)

        hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
        hx4dup = _upsample_like(hx4d,hx3)

        hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
        hx3dup = _upsample_like(hx3d,hx2)

        hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
        hx2dup = _upsample_like(hx2d,hx1)

        hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))


        #side output
        d1 = self.side1(hx1d)

        d2 = self.side2(hx2d)
        d2 = _upsample_like(d2,d1)

        d3 = self.side3(hx3d)
        d3 = _upsample_like(d3,d1)

        d4 = self.side4(hx4d)
        d4 = _upsample_like(d4,d1)

        d5 = self.side5(hx5d)
        d5 = _upsample_like(d5,d1)

        d6 = self.side6(hx6)
        d6 = _upsample_like(d6,d1)

        d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))

        return d0,d1,d2,d3,d4,d5,d6

训练网络如下:
mutiunet_train.py

# -*-coding:utf-8-*-
"""
Created on 2022.3.31
programing language:python
@author:夜剑听雨
"""
# from model.dncnn import DnCNN
from model.mutiunet import U2NET
from utils.dataset import MyDataset
from utils.SignalProcessing import batch_snr
from torch import optim
import torch.nn as nn
import torch
import time
import numpy as np
import matplotlib.pyplot as plt
import os

# 选择设备,有cuda用cuda,没有就用cpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载网络,图片单通道1,分类为1。
my_net = U2NET(1, 1)
# 将网络拷贝到设备中
my_net.to(device=device)
# 指定特征和标签数据地址,加载数据集
train_path_x = "..\\data\\feature\\"
train_path_y = "..\\data\\label\\"
# 划分数据集,训练集:验证集:测试集 = 8:1:1
full_dataset = MyDataset(train_path_x, train_path_y)
valida_size = int(len(full_dataset) * 0.1)
train_size = len(full_dataset) - valida_size * 2
# 指定加载数据的batch_size
batch_size = 32
# 划分数据集
train_dataset, test_dataset, valida_dataset = torch.utils.data.random_split(full_dataset,
                                                                            [train_size, valida_size, valida_size])
# 加载并且乱序训练数据集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# 加载并且乱序验证数据集
valida_loader = torch.utils.data.DataLoader(dataset=valida_dataset, batch_size=batch_size, shuffle=True)
# 加载测试数据集,测试数据不需要乱序
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 定义优化方法
epochs = 20  # 设置训练次数
LR = 0.001  # 设置学习率
optimizer = optim.Adam(my_net.parameters(), lr=LR)
# 定义损失函数
criterion = nn.MSELoss(reduction='sum')  # reduction='sum'表示不除以batch_size

temp_sets1 = []  # 用于记录训练,验证集的loss,每一个epoch都做一次训练,验证
temp_sets2 = []  # # 用于记录测试集的SNR,去噪前和去噪后都要记录

start_time = time.strftime("1. %Y-%m-%d %H:%M:%S", time.localtime())  # 开始时间
if not os.path.exists(r"./save_dir/"):
    os.makedirs(r"./save_dir/")


def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
    loss0 = criterion(d0, labels_v)
    loss1 = criterion(d1, labels_v)
    loss2 = criterion(d2, labels_v)
    loss3 = criterion(d3, labels_v)
    loss4 = criterion(d4, labels_v)
    loss5 = criterion(d5, labels_v)
    loss6 = criterion(d6, labels_v)

    loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
    print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n" % (
    loss0.item(), loss1.item(), loss2.item(), loss3.item(), loss4.item(), loss5.item(), loss6.item()))

    return loss0, loss


# 每一个epoch都做一次训练,验证,测试
for epoch in range(epochs):
    # 训练集训练网络
    train_loss = 0.0
    my_net.train()  # 开启训练模式
    for batch_idx1, (batch_x, batch_y) in enumerate(train_loader, 0):  # 0开始计数
        # 加载数据至GPU
        batch_x = batch_x.to(device=device, dtype=torch.float32)
        batch_y = batch_y.to(device=device, dtype=torch.float32)
        d0, d1, d2, d3, d4, d5, d6 = my_net(batch_x)  # 使用网络参数,输出预测结果
        # 计算loss
        _, loss1 = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, (batch_x - batch_y))
        train_loss += loss1.item()  # 累加计算本次epoch的loss,最后还需要除以每个epoch可以抽取多少个batch数,即最后的n_count值
        optimizer.zero_grad()  # 先将梯度归零,等价于net.zero_grad(0
        loss1.backward()  # 反向传播计算得到每个参数的梯度值
        optimizer.step()  # 通过梯度下降执行一步参数更新
    train_loss = train_loss / (batch_idx1 + 1)  # 本次epoch的平均loss

    # 验证集验证网络
    my_net.eval()  # 开启评估/测试模式
    val_loss = 0.0
    for batch_idx2, (val_x, val_y) in enumerate(valida_loader, 0):
        # 加载数据至GPU
        val_x = val_x.to(device=device, dtype=torch.float32)
        val_y = val_y.to(device=device, dtype=torch.float32)
        with torch.no_grad():  # 不需要做梯度更新,所以要关闭求梯度
            d0, d1, d2, d3, d4, d5, d6 = my_net(val_x)  # 使用网络参数,输出预测结果
            # 计算loss
            _, loss2 = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, (val_x - val_y))
            val_loss += loss2.item()  # 累加计算本次epoch的loss,最后还需要除以每个epoch可以抽取多少个batch数,即最后的count值
    val_loss = val_loss / (batch_idx2 + 1)
    # 训练,验证,测试的loss保存至loss_sets中
    loss_set = [train_loss, val_loss]
    temp_sets1.append(loss_set)
    # {:.4f}值用format格式化输出,保留小数点后四位
    print("epoch={},训练集loss:{:.4f},验证集loss:{:.4f}".format(epoch + 1, train_loss, val_loss))

    # 测试集测试网络,采用计算一个batch数据的信噪比(snr)作为评估指标
    snr_set1 = 0.0
    snr_set2 = 0.0
    for batch_idx3, (test_x, test_y) in enumerate(test_loader, 0):
        # 加载数据至GPU
        test_x = test_x.to(device=device, dtype=torch.float32)
        test_y = test_y.to(device=device, dtype=torch.float32)
        with torch.no_grad():  # 不需要做梯度更新,所以要关闭求梯度
            d0, d1, d2, d3, d4, d5, d6 = my_net(test_x)  # 使用网络参数,输出预测结果(训练的是噪声)
            # 含噪数据减去噪声得到的才是去噪后的数据
            clean_out = test_x - d0
            # 计算网络去噪后的数据和干净数据的信噪比(此处是计算了所有的数据,除以了batch_size求均值)
            SNR1 = batch_snr(test_x, test_y)  # 去噪前的信噪比
            SNR2 = batch_snr(clean_out, test_y)  # 去噪后的信噪比
        snr_set1 += SNR1
        snr_set2 += SNR2
        # 累加计算本次epoch的loss,最后还需要除以每个epoch可以抽取多少个batch数,即最后的count值
    snr_set1 = snr_set1 / (batch_idx3 + 1)
    snr_set2 = snr_set2 / (batch_idx3 + 1)

    # 训练,验证,测试的loss保存至loss_sets中
    snr_set = [snr_set1, snr_set2]
    temp_sets2.append(snr_set)

    # {:.4f}值用format格式化输出,保留小数点后四位
    print("epoch={},去噪前的平均信噪比(SNR):{:.4f} dB,去噪后的平均信噪比(SNR):{:.4f} dB".format(epoch + 1, snr_set1, snr_set2))

    # 保存网络模型
    model_name = f'model_epoch{epoch + 1}'  # 模型命名
    torch.save(my_net, os.path.join('./save_dir', model_name + '.pth'))  # 保存整个神经网络的模型结构以及参数

end_time = time.strftime("1. %Y-%m-%d %H:%M:%S", time.localtime())  # 结束时间
# 将训练花费的时间写成一个txt文档,保存到当前文件夹下
with open('训练时间.txt', 'w', encoding='utf-8') as f:
    f.write(start_time)
    f.write(end_time)
    f.close()
print("训练开始时间{}>>>>>>>>>>>>>>>>训练结束时间{}".format(start_time, end_time))  # 打印所用时间

# temp_sets1是三维张量无法保存,需要变成2维数组才能存为txt文件
loss_sets = []
for sets in temp_sets1:
    for i in range(2):
        loss_sets.append(sets[i])
loss_sets = np.array(loss_sets).reshape(-1, 2)  # 重塑形状10*2,-1表示自动推导
# fmt参数,指定保存的文件格式。将loss_sets存为txt文件
np.savetxt('loss_sets.txt', loss_sets, fmt='%.4f')

# temp_sets2是三维张量无法保存,需要变成2维数组才能存为txt文件
snr_sets = []
for sets in temp_sets2:
    for i in range(2):
        snr_sets.append(sets[i])
snr_sets = np.array(snr_sets).reshape(-1, 2)  # 重塑形状10*2,-1表示自动推导
# fmt参数,指定保存的文件格式。将loss_sets存为txt文件
np.savetxt('snr_sets.txt', snr_sets, fmt='%.4f')

# 显示loss曲线
loss_lines = np.loadtxt('./loss_sets.txt')
# 前面除以batch_size会导致数值太小了不易观察
train_line = loss_lines[:, 0] / batch_size
valida_line = loss_lines[:, 1] / batch_size
x1 = range(len(train_line))
fig1 = plt.figure()
plt.plot(x1, train_line, x1, valida_line)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend(['train', 'valida'])
plt.savefig('loss_plot.png', bbox_inches='tight')
plt.tight_layout()

# 显示snr曲线
snr_lines = np.loadtxt('./snr_sets.txt')
De_before = snr_lines[:, 0]
De_after = snr_lines[:, 1]
x2 = range(len(De_before))
fig2 = plt.figure()
plt.plot(x2, De_before, x2, De_after)
plt.xlabel('epoch')
plt.ylabel('SNR')
plt.legend(['noise', 'denoise'])
plt.savefig('snr_plot.png', bbox_inches='tight')
plt.tight_layout()

plt.show()

训练图像
在这里插入图片描述

模型优化方向

  • 注意力以及编解码模型的运用,针对局部噪声,如果与其他空间位置有关系,可以采用注意力或者增大感受野的方式进行解决。更多偏向于模型对整体地震波的感知。
  • 针对复杂噪声,模型可以多尺度化,不止是针对模型出现的噪声,更针对地震波在语义上的特征也可以进行去噪化。真实的地震波不止出现在最后,也可以在多个尺度内对地震波进行去噪。
    在这里插入图片描述
  • 优化函数多样化
    针对的目标一致的情况下, 可以添加相对应的代价评估函数,损失函数设计等等,模型欠拟合可以采用非线性更为强悍的激活函数,模型过拟合时,常常要通过正则化、提前终止、学习率衰减等方式进行解决。视具体任务而言
  • 预处理多样化
    相对复杂的任务,可能模型的鲁棒性达不到要求,一般可以通过一些常规的算法进行数据的预处理工作,包括无监督,傅里叶去噪等等,模型学习通过预处理 的数据的时候加快收敛速度

参考bilibili 基于深度学习的地震数据去噪处理
有兴趣的小伙欢迎一起探讨技术,附个人微信
本人测井方向、数字岩心导电性的数值模拟。
在这里插入图片描述

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

深度学习从入门到精通——基于深度学习的地震数据去噪处理 的相关文章

  • 机器学习:基于python微博舆情分析系统+可视化+Django框架 K-means聚类算法(源码)✅

    博主介绍 全网粉丝10W 前互联网大厂软件研发 集结硕博英豪成立工作室 专注于计算机相关专业 毕业设计 项目实战6年之久 选择我们就是选择放心 选择安心毕业 感兴趣的可以先收藏起来 点赞 关注不迷路 毕业设计 2023 2024年计算机毕业
  • 用CHAT写一份标题为职业教育教师教学能力提升培训总结

    CHAT回复 标题 职业教育教师教学能力提升培训总结 一 活动概述 本次由学校组织的职业教育教师教学能力提升培训于8月15日至8月20日顺利进行 来自全校的60位职业教育教师参与了此次培训 主讲人为享有盛名的教育专家马丁先生 二 培训内容与
  • 利用CHAT写实验结论

    问CHAT 通过观察放置在玻璃表面上的单个水滴 人们可以观察到水滴充当成像系统 探究这样一个透镜的放大倍数和分辨率 CHAT回复 实验报告标题 利用玻璃表面的单一水滴观察成像系统的放大倍数和分辨率 一 实验目的 通过对比和测量 研究和探索玻
  • 让CHAT介绍下V2ray

    CHAT回复 V2Ray是一个网络工具 主要用于科学上网和保护用户的网络安全 它的名字源自Vmess Ray 光线 通过使用新的网络协议 为用户提供稳定且灵活的代理服务 下面是一些V2Ray的主要特性 1 多协议支持 V2Ray 提供了大量
  • 利用CHAT上传文件的操作

    问CHAT autox js ui 上传框 CHAT回复 上传文件的操作如果是在应用界面中的话 由于Android对于文件权限的限制 你可能不能直接模拟点击选择文件 一般来说有两种常见的解决方案 一种是使用intent来模拟发送一个文件路径
  • 毕业设计- 基于深度学习的小样本时间序列预测算法 - Attention

    目录 前言 课题背景与意义 课题实现 一 数据集 二 设计思路 三 相关代码示例 最后 前言 大四是整个大学期间最忙碌的时光 一边要忙着准备考研 考公 考教资或者实习为毕业后面临的就业升学做准备 一边要为毕业设计耗费大量精力 近几年各个学校
  • 无人机视角、多模态、模型剪枝、国产AI芯片部署

    无人机视角 多模态 模型剪枝 国产AI芯片部署是当前无人机技术领域的重要研究方向 其原理和应用价值在以下几个方面进行详细讲述 一 无人机视角 无人机视角是指在无人机上搭载摄像头等设备 通过航拍图像获取环境信息 并进行图像处理和分析 这种技术
  • 台积电再被坑,2纳米光刻机优先给Intel和三星,美国太霸道了

    外媒指出今年ASML的10台2纳米光刻机分配已经基本确定了 Intel拿到6台 三星获得3台 台积电只能得到一台 考虑到美国对ASML的强大影响力 外媒的这些消息应该有较高的可信性 Intel在先进工艺制程方面 自从2014年量产14纳米之
  • 手把手教你用 Stable Diffusion 写好提示词

    Stable Diffusion 技术把 AI 图像生成提高到了一个全新高度 文生图 Text to image 生成质量很大程度上取决于你的提示词 Prompt 好不好 前面文章写了一篇文章 一份保姆级的 Stable Diffusion
  • 机器学习算法实战案例:时间序列数据最全的预处理方法总结

    文章目录 1 缺失值处理 1 1 统计缺失值 1 2 删除缺失值 1 3 指定值填充 1 4 均值 中位数 众数填充
  • 人工智能 AI 如何让我们的生活更加便利

    每个人都可以从新技术中获益 一想到工作或生活更为便利 简捷且拥有更多空余时间 谁会不为之高兴呢 借助人工智能 每天能够多一些空余时间 或丰富自己的业余生活 为培养日常兴趣爱好增添一点便利 从电子阅读器到智能家居 再到植物识别应用和智能室内花
  • AI帮助终结全球饥饿问题

    全球饥饿问题是牵动人心的头等大事 5月28日是 世界饥饿日 这一问题更值得关注 让人人都能吃饱的想法不仅令人向往 而且很快就会变成现实 与大多数新事物引进一样 对于在控制世界粮食供应这样复杂的任务中AI究竟应该发挥多大的作用 人们还踟蹰不前
  • 蒙特卡洛在发电系统中的应用(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码实现
  • 15天学会Python深度学习,我是如何办到的?

    陆陆续续有同学向我们咨询 Python编程如何上手 深度学习怎么学习 如果有人能手把手 一对一帮帮我就好了 我们非常理解初学者的茫然和困惑 大量视频 书籍 广告干扰了大家的判断 学习Python和人工智能 成为内行人不难 为此 我们推出了
  • 考虑光伏出力利用率的电动汽车充电站能量调度策略研究(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码 数据
  • 国产化率100%,北斗导航单日定位4500亿次,外媒:GPS将被淘汰

    追赶30年的技术差距 国产卫星导航系统 北斗 开始扬眉吐气 数据显示 北斗导航目前单日定位量达4500亿次 已经获得100多个国家的合作意向 甚至国际民航也摒弃以往 独宠 GPS的惯例 将北斗纳入参考标准 对此 有媒体直言 GPS多年来的技
  • 深度学习(5)--Keras实战

    一 Keras基础概念 Keras是深度学习中的一个神经网络框架 是一个高级神经网络API 用Python编写 可以在TensorFlow CNTK或Theano之上运行 Keras优点 1 允许简单快速的原型设计 用户友好性 模块化和可扩
  • 两个月进口猛增10倍,买近百台光刻机,难怪ASML不舍中国市场

    据统计数据显示 2023年11月和12月 中国从荷兰进口的光刻机设备同比猛增10倍 进口金额超过19亿美元 让ASML赚得盆满钵满 ASML早前表示中国客户在2023年订购的光刻机全数交付 2023年11月中国进口的光刻机达到42台 进口金
  • 对中国手机作恶的谷歌,印度CEO先后向三星和苹果低头求饶

    日前苹果与谷歌宣布合作 发布了 Find My Device Network 的草案 旨在规范蓝牙追踪器的使用 在以往苹果和谷歌的生态形成鲜明的壁垒 各走各路 如今双方竟然达成合作 发生了什么事 首先是谷歌安卓系统的市场份额显著下滑 数年来
  • AI 赋能绿色制冷,香港岭南大学开发 DEMMFL 模型进行建筑冷负荷预测

    近年来 城市化进程加速所带来的碳排放量骤增 已经严重威胁到了全球环境 多个国家均已给出了 碳达峰 碳中和 的明确时间点 一场覆盖全球 全行业的 绿色革命 已经拉开序幕 在一众行业中 建筑是当之无愧的能耗大户 其中又以暖通空调 Heating

随机推荐

  • 一证通查查询名下互联网账户

    全国互联网账户 一证通查 来啦 核验身份后一键在线查询名下所有关联号码以及注册 名下电话卡查询 https tb3 cn A6zcU6手机号绑定查询 https tb3 cn A3lhMk
  • Vue3.0脚手架安装项目(通过命令行)

    Vue3 0通过命令行来创建Vue脚手架项目 1 先安装node js https nodejs org en download 自行安装 查看node jsb版本 node version 2 全局安装脚手架 npm install g
  • 智能信息处理专业是干嘛的?

    摘要 主要是介绍智能信息处理专业是干嘛的 包括其定义 涉及的领域 学习的内容和算法 发展趋势 工作前景和相关学习资料 def 使用各种智能手段进行信息交换的过程 其中智能信手段包括人工智能 机器智能 计算机智能等技术 所涉及学科 智能信息处
  • linux中感叹号的作用,Linux - 感叹号

    在Linux命令行下令人惊叹的惊叹号 符号在 Linux 中不但可以用作否定符号 还可以用来从历史命令记录中取出命令或不加修改的执行之前运行的命令 下面的所有命令都已经在 Bash Shell 中经过确切地检验 尽管我没有试过 但大多都不能
  • STM32--基本定时器&&通用定时器

    1 定时器概述 定时器分为基本定时器 通用定时器 高级定时器 例如 STM32F10x系列包含4个通用定时器 TIM2 TIM5但是STM32F103Rx系列只有3个通用定时器 TIM2 TIM4 这些通用定时器是完全独立的 不共享任何资源
  • 上传、下载huggingface仓库文件(模型、数据等)

    下载 例如 想要从huggingface hub下载llama 13b模型文件到本地 可以用如下命令 local dir就是你想要下载到的本地文件夹 from huggingface hub import snapshot download
  • MySQl的基本操作

    前言 MySQL是一种关联数据库管理系统 由于其体积小 速度快的特点 数据库CURD 他和前面的oracel的使用方法差不多 这里就不过多叙述 大概记录一下 创建数据库 创建一个名称为mydb1的数据库 默认为latin1 create d
  • Java-用户自定义异常

    Java 用户自定义异常 1 如何自定义异常 继承现有的异常父类 RuntimeException Exception 提供全局常量 serialVersionUID 提供重载的构造器 2 code举例 定义 package p8excep
  • 使用github生成在线前端项目链接

    作为一个前端小白 一开始是想面试的时候可以让HR直观地看到我的前端项目 然后就在网上找方法可以怎么解决我的这个需求 直至昨天 参考各位大佬的笔记和博客 断断续续 摸索了好几天 总算有个自己的网址 看到的方法大致如下 一 使用花生壳软件进行远
  • H5网页跳转打开微信小程序详解(含完整代码)

    限制条件 目前仅支持在微信内打开H5页面 已认证的服务号 服务号绑定 JS接口安全域名 下的网页可使用此标签跳转任意合法合规的小程序 已认证的非个人主体的小程序 使用小程序云开发的静态网页托管绑定的域名下的网页 可以使用此标签跳转任意合法合
  • csharp: Export DataSet into Excel and import all the Excel sheets to DataSet

  • 红帽Redhat—使用VMware Workstation 16 Pro 安装RHEL8.3登陆

    提示 文章写完后 目录可以自动生成 如何生成可参考右边的帮助文档 文章目录 一 环境工具准备 二 VMware Workstation 16 Pro虚拟机创建步骤 三 安装RHEL8 3系统操作步骤 四 操作系统的管理方式 五 SSH远程登
  • [java] mvn 使用笔记

    设置版本号 mvn versions set mvn versions commit
  • C语言结构体

    一 结构体的定义 结构体 Struct 是C语言中的一个重要数据类型 它可以用来存储多个不同类型的变量 结构体类似于一个自定义的数据类型 可以包含多个不同类型的成员变量 每个成员变量可以有自己的数据类型和值 二 结构体存储数据方式 结构体存
  • windows10在资源管理器下右键文件出现无响应解决方案

    1 下载右键菜单管理工具 使用二分查找找到产生问题的原因 我这里是因为qingshellext Class 禁用以后就没有问题了
  • 数组的转置和轴对称(python)

    文章目录 TOC 文章目录 1 什么叫轴 2 什么叫转置 3 转置 3 1简单转置 像二位数组 只有两个轴 再怎么转置也只是两个轴进行位置交换 所以 直接使用T就可以了 例如 3 2transpose 方法进行转置 3 3swapaxes
  • Android SQLite 数据库 存取 BLOB 二进制 文件

    Android开发时用到二进制数据 也可以理解为BYTE数组 的SQLite存取 可能会有人对存取如mp3 图片类文件困惑 其实p3 图片类文件读到内存就可理解为BYTE数组 只要在 下面的基础上增加将文件读到BYTE数组就可以了 其他操作
  • python设置下载源

    我们一般直接用pip下载三方包会很慢 设置以下命令可以加速下载 pip config set global index url Simple Index pip3 9 config set global index url Simple I
  • element Dialog子组件弹框

    父组件 div div
  • 深度学习从入门到精通——基于深度学习的地震数据去噪处理

    传统机器学习 SVM boosting bagging knn 深度学习 CNN 典型 GAN 地震应用方向 叠前地震数据随机噪声去除 实现噪声分离 面波去噪 面波作为很强的干扰波出现在地震勘探中 大大降低了地震记录的分 辨率和信噪比 深度