【2023年电赛】运动目标控制与自动追踪系统(E 题)最简单实现

2023-11-01

本方案的思路是最简单的不涉及复杂算法:识别矩形框,标记矩形框,输出坐标和中心点,计算长度,控制舵机移动固定长度!仅供完成基础功能参考,不喜勿喷!

# 实现运动目标控制与自动追踪系统

## 任务概述
本文将介绍如何使用OpenMV开发板和舵机构建一个运动目标控制与自动追踪系统。该系统包括模拟目标运动的红色光斑位置控制系统和指示自动追踪的绿色光斑位置控制系统。通过本文的实现,我们可以在图像中识别目标,控制舵机沿着目标移动,并输出目标矩形框的中心位置和长度。

## 硬件准备
1. OpenMV H7 Plus开发板
2. 红色和绿色激光笔
3. 两个舵机(连接到OpenMV开发板)

## 硬件连接
将两个舵机分别连接到OpenMV开发板的舵机引脚(根据实际引脚选择)。

## 相机设置
在代码中,我们将相机设置为QVGA分辨率和RGB565格式。

import sensor, image, math, pyb

# 初始化相机
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time=2000)

# 其他代码...

## 目标检测与跟踪(目标检测部分代码实测过!)
### 寻找矩形函数
为了在图像中识别目标矩形框,我们需要编写一个寻找矩形函数。该函数将返回第二大的矩形区域,以便我们可以找到目标的位置。

# 寻找矩形函数,返回第二大的矩形区域
def find_second_largest_rectangle(blobs):
    max_area = 0
    max_blob = None
    second_max_area = 0
    second_max_blob = None

    for blob in blobs:
        area = blob.area()
        if area > max_area:
            second_max_area = max_area
            second_max_blob = max_blob
            max_area = area
            max_blob = blob
        elif area > second_max_area:
            second_max_area = area
            second_max_blob = blob

    return second_max_blob

## 主循环
在主循环中,我们将不断获取图像并进行目标检测和跟踪。

while True:
    img = sensor.snapshot() # 获取图像
    blobs = img.find_blobs([black_threshold], pixels_threshold=200, area_threshold=200)

    if blobs:
        # 寻找第二大的矩形区域
        second_max_blob = find_second_largest_rectangle(blobs)
        if second_max_blob:
            img.draw_rectangle(second_max_blob.rect(), color=(255, 0, 0), thickness=4) # 绘制第二大的矩形框,颜色为红色

            # 其他代码...

## 舵机控制
为了实现目标跟踪,我们需要控制舵机使其沿着矩形框移动一圈,并回到中心点。这里我们使用了`pyb.Servo()`来控制舵机运动。

# 舵机参数
servo_pan_pin = 1 # 舵机1的引脚编号
servo_tilt_pin = 2 # 舵机2的引脚编号
servo_pan = pyb.Servo(servo_pan_pin) # 初始化舵机1
servo_tilt = pyb.Servo(servo_tilt_pin) # 初始化舵机2
servo_speed = 50 # 舵机转动速度(0-100,越大越快)
servo_pan_range = (0, 180) # 舵机1转动范围(角度)
servo_tilt_range = (0, 180) # 舵机2转动范围(角度)

# 控制舵机沿着矩形框移动一圈,并回到中心点
for angle in range(servo_pan_range[0], servo_pan_range[1], servo_speed):
    servo_pan.angle(angle) # 控制舵机1水平旋转
    servo_tilt.angle(angle) # 控制舵机2垂直旋转
    pyb.delay(100) # 延时一段时间,控制舵机转动速度

# 将舵机回到中心点
servo_pan.angle((servo_pan_range[0] + servo_pan_range[1]) // 2)
servo_tilt.angle((servo_tilt_range[0] + servo_tilt_range[1]) // 2)

## 结果输出
在检测到目标后,我们将输出目标矩形框的中心位置和长度。同时,我们会在图像中标记出矩形框的位置。(测试坐标和长度还是比较准备 )

# 获取矩形框的中心点坐标
x, y = second_max_blob.cx(), second_max_blob.cy()

# 计算矩形框的长度和宽度(单位:厘米)
width_cm = 2 * distance_cm * math.tan(math.radians(H_FOV / 2)) * (second_max_blob.w() / img.width())
height_cm = 2 * distance_cm * math.tan(math.radians(V_FOV / 2)) * (second_max_blob.h() / img.height())

# 输出矩形框的中心点坐标和长度(单位:厘米)
print("Rectangle Center Coordinates (cm): x={}, y={}".format(x, y))
print("Rectangle Width (cm): {}, Height (cm): {}".format(width_cm, height_cm))

# 绘制黄色圆点标记矩形框中心位置
img.draw_circle(x, y, 5, color=(255, 255, 0), thickness=2)

## 运行效果
将硬件连接好后,上传代码到OpenMV开发板,并调整舵机参数和位置。运行代码后,你将看到舵机沿着目标矩形框移动,并在图像中标记出矩形框的位置和中心点。

## 结束语
通过本文的实现,我们成功搭建了一个运动目标控制与自动追踪系统。通过使用OpenMV开发板和舵机,我们能够在图像中识别目标,并控制舵机使其跟踪目标。

## 参考链接
1. OpenMV官方网站: https://openmv.io/
2. Pyb Servo文档: https://docs.openmv.io/library/pyb.Servo.html

欢迎大家提出宝贵的意见和建议,共同探讨学习和改进。谢谢阅读!

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

【2023年电赛】运动目标控制与自动追踪系统(E 题)最简单实现 的相关文章

随机推荐

  • linux线程使用

    概念 1 PCB Process Control Block 进程管理块 系统中存放进程的管理和控制信息的数据结构体 每一个进程均有一个PCB 在创建进程时建立 直到进程撤销而撤销 2 程序段 是进程中能被进程调度程序在CPU上执行的程序代
  • STL空间配置

    SGI STL有两级配置器 第一级配置器的allocate 和 realloc 都是在调用malloc 和 realloc 不成功后 改调用oom malloc 和 oom realloc 后两者都有内循环 不断调用 内存不足处理例程 期望
  • Unity3D中读取CSV文件

    转自 https www cnblogs com lingLuoChengMi p 9990488 html 本人对原文进行了整理 适当加上注释和小部分修改 不过大部分代码也是转载 说明 1 写入一个单元格时 如果含有逗号 则需要将整个字段
  • NVIDIA可编程推理加速器TensorRT学习笔记(三)——加速推理

    文章目录 简单张量RT示例 将预训练的图像分割 PyTorch 模型转换为 ONNX 将 ONNX 模型导入 TensorRT 生成引擎并执行推理 对输入进行批处理 分析应用程序 优化您的应用程序 使用混合精度计算 更改工作区大小 重用 T
  • 主成分分析二级指标权重_权重赋值之“主成分分析法”

    主成分分析 Principal Component Analysis PCA 最早是由K 皮尔森 Karl Pearson 对非随机变量引入的一种统计方法 尔后H 霍特林将此方法推广到随机向量的情形 主成分是指通过正交变换将一组可能存在相关
  • 阿里云物联网Iot设备上下线状态数据流转的设置

    要想通过物联网平台实现远程监控设备 那么就要建立监控端设备 比如手机 和被监控端设备的数据交互 在阿里云物联网平台完成这个交互功能的方法就是建立两个设备之间的数据流转 对于设备要流转的物模型数据 阿里云网站上已经有详细的示例介绍 但是对于设
  • 最大上升序列Super Jumping! Jumping! Jumping!

    多组输入 第一个数代表有多少个数据 输入0结束 Sample Input 3 1 3 2 4 1 2 3 4 4 3 3 2 1 0 Sample Output 4 10 3 1到3最大 1到2到3到4最大 直接到三最大 include
  • 尚硅谷 Vue 2.0 + Vue 3.0 入门到精通教程学习笔记 (二)

    第二章 Vue 组件化编程 2 1 模块与组件 模块化与组件化 2 1 1 模块 1 理解 向外提供特定功能的 js 程序 一般就是一个 js 文件 2 为什么 js 文件很多很复杂 3 作用 复用 js 简化 js 的编写 提高 js 运
  • Qt 无边框、透明、可移动、的个性窗体

    原文地址 转载 Qt 无边框 透明 可移动 的个性窗体案例详解 作者 风贝 很多朋友都问透明的效果怎么做 为什么自己做的无边框窗体不可移动 一个个回答的很累 干脆写出来分享下好了 我只用代码说话 工程的main cpp int main i
  • python菜单栏_「每日一练」Python实现下拉和弹出式菜单

    用Python就一定要用到界面操作 有一个好的用户界面 才会有好的用户体验 下边就开始创建我们的主窗口 并实现下拉和弹出式菜单 案例 创建主窗口 并实现下拉和弹出式菜单 先上代码 运行效果 题目详述 第一行 import tkinter a
  • Jupyter notebook显示连接失败、服务器正忙

    pip install tornado 4 5 成功
  • # AutoLeaders控制组—51单片机学习笔记(LED控制、独立按键、数码管)

    51单片机 1 单片机基础 1 1 内部构成 CPU RAM ROM 定时器 中断系统 通讯接口等 相当于袖珍版计算机 一个芯片能构成完整的计算机系统 1 2 51单片机 公司 STC公司 位数 8位 RAM 512字节 第二天丢失 相当于
  • HashMap底层源码分析

    HashMap HashMap 是一个散列表 它存储的内容是键值对 key value 映射 HashMap是非线程安全的 实现了 Map 接口 根据键的 HashCode 值存储数据 具有很快的访问速度 最多允许一条记录的键为 null
  • 编译原理期末习题考试复习题目(重点三)

    编译原理期末习题考试复习题目 重点三 目录 编译原理期末习题考试复习题目 重点三 三 判断题 四 简答题 三 判断题 下列各题 你认为正确的 请在题干的括号内打 错的打 1 计算机高级语言翻译成低级语言只有解释一种方式 X 2 在编译中进行
  • CMOS图像传感器——pipeline像素控制

    一 传统像素操作 传统CMOS图像传感器的芯片架构中 像素的控制信号从水平方向驱动 像素的源极跟随器输出电压垂直地输出到位于顶部和底部的模拟前端读出电路 其具体实现方式如下图所示 其中RST TX和SEL是像素水平控制信号 像素输出电压PI
  • CMake中aux_source_directory的使用

    CMake中的aux source directory命令用于查找目录中的所有源文件 其格式如下 aux source directory
  • 新手如何有效的刷算法题(LeetCode)

    点击关注上方 五分钟学算法 设为 置顶或星标 第一时间送达干货 来源 五分钟学算法 前言 作为一名非科班出身的程序员 我是参加工作之后才开始接触算法 学算法至今有将近五年的时间 期间输出文字约 100 多万 从算法小白到写出百万阅读的算法文
  • python3 mmh3安装及使用

    mmh3安装方法 哈希方法主要有MD SHA Murmur CityHash MAC等几种方法 mmh3全程murmurhash3 是一种非加密的哈希算法 常用于hadoop等分布式存储情境中 在anaconda中安装使用命令 pip in
  • 【项目实战】AOSP源码阅读与目录结构

    一 背景 随着Android系统的不断发展 了解其内部实现和架构变得越来越重要 AOSP Android Open Source Project 是Android的开放源代码项目 为开发者提供了详细的源代码和工具 使得我们能够深入了解And
  • 【2023年电赛】运动目标控制与自动追踪系统(E 题)最简单实现

    本方案的思路是最简单的不涉及复杂算法 识别矩形框 标记矩形框 输出坐标和中心点 计算长度 控制舵机移动固定长度 仅供完成基础功能参考 不喜勿喷 实现运动目标控制与自动追踪系统 任务概述 本文将介绍如何使用OpenMV开发板和舵机构建一个运动