人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法

2023-11-05

1.SFT 监督微调

1.1 SFT 监督微调基本概念

SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出层外的所有模型设计及其参数。这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。源模型的输出层与源数据集的标签紧密相关,因此在目标模型中不予采用。微调时,为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。在目标数据集上训练目标模型时,将从头训练到输出层,其余层的参数都基于源模型的参数微调得到。

1.2 监督微调的步骤

具体来说,监督式微调包括以下几个步骤:

  • 预训练: 首先在一个大规模的数据集上训练一个深度学习模型,例如使用自监督学习或者无监督学习算法进行预训练;
  • 微调: 使用目标任务的训练集对预训练模型进行微调。通常,只有预训练模型中的一部分层被微调,例如只微调模型的最后几层或者某些中间层。在微调过程中,通过反向传播算法对模型进行优化,使得模型在目标任务上表现更好;
  • 评估: 使用目标任务的测试集对微调后的模型进行评估,得到模型在目标任务上的性能指标。

1.3 监督微调的特点

监督式微调能够利用预训练模型的参数和结构,避免从头开始训练模型,从而加速模型的训练过程,并且能够提高模型在目标任务上的表现。监督式微调在计算机视觉、自然语言处理等领域中得到了广泛应用。然而监督也存在一些缺点。首先,需要大量的标注数据用于目标任务的微调,如果标注数据不足,可能会导致微调后的模型表现不佳。其次,由于预训练模型的参数和结构对微调后的模型性能有很大影响,因此选择合适的预训练模型也很重要。

1.4 常见案例

  • 样例 1

在计算机视觉中,低层的网络主要学习图像的边缘或色斑,中层的网络主要学习物体的局部和纹理,高层的网络识别抽象的语义,如下图所示。因此,可以把一个神经网络分成两块:

  • 低层的网络进行特征抽取,将原始信息变成容易被后面任务使用的特征;

  • 输出层的网络进行具体任务的预测。输出层因为涉及到具体任务没办法在不同任务中复用,但是低层的网络是具有通用型的,可以应用到其他任务上。

    下图表示的是将预训练模型的前 L-1 层的参数复制到微调模型,而微调模型的输出层参数随机初始化。在训练过程中,通过设置很小的学习率,从而达到微调的目的。

  • 样例 2

BERT 模型是 Google AI 研究院提出的一种预训练模型,通过预训练 + 微调的方式于多个 NLP 下游任务达到当时最先进水平,如实体识别、文本匹配、阅读理解等。与样例 1 一样,BERT 模型微调时,将预训练好的模型参数复制到微调模型,而输出层参数随机初始化。

1.5 SFT 监督微调的主流方法

随着技术的发展,涌现出越来越多的大语言模型,且模型参数越来越多,比如 GPT3 已经达到 1750 亿的参数量,传统的监督微调方法已经不再能适用现阶段的大语言模型。为了解决微调参数量太多的问题,同时也要保证微调效果,急需研发出参数高效的微调方法(Parameter Efficient Fine Tuning, PEFT)。目前,已经涌现出不少参数高效的微调方法,其中主流的方法包括:

  • LoRA
  • P-tuning v2
  • Freeze

2. LoRA 微调方法

2.1 LoRA 微调方法的基本概念

LoRA(Low-Rank Adaptation of Large Language Models),直译为大语言模型的低阶自适应。LoRA 的基本原理是冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参数数量较少,这样不仅 finetune 的成本显著下降,还能获得和全模型参数参与微调类似的效果。

随着大语言模型的发展,模型的参数量越来越大,比如 GPT-3 参数量已经高达 1750 亿,因此,微调所有模型参数变得不可行。LoRA 微调方法由微软提出,通过只微调新增参数的方式,大大减少了下游任务的可训练参数数量。

2.2 LoRA 微调方法的基本原理

神经网络的每一层都包含矩阵的乘法。这些层中的权重矩阵通常具有满秩。当适应特定任务时,预训练语言模型具有低的 “内在维度”,将它们随机投影到更小的子空间时,它们仍然可以有效地学习。

在大语言模型微调的过程中,LoRA 冻结了预先训练好的模型权重,并将可训练的秩的分解矩阵注入到 Transformer 体系结构的每一层。例如,对于预训练的权重矩阵W0​,可以让其更新受到用低秩分解表示后者的约束:

W0​+△W=W0​+BAW0​+△W=W0​+BAW0​+△W=W0​+BA

其中:

W0​∈Rd×k,B∈Rd×r,A∈Rr×kW0​∈Rd×k,B∈Rd×r,A∈Rr×kW0​∈Rd×k,B∈Rd×r,A∈Rr×k

而且,秩r≪min(d,k),
此时,修正后的正向传播计算公式就变成:

h=W0​x+△Wx=W0​x+BAxh=W0​x+△Wx=W0​x+BAxh=W0​x+△Wx=W0​x+BAx

在模型微调时,W0​被冻结,不接受梯度更新,只微调参数AB。与所有参数参与模型微调相比,此时该步骤模型微调的参数量由d×k变成d×r+r×k,而r≪min(d,k),因此微调参数量大量减少了。

如下图所示,LoRA 微调时,对A使用随机高斯初始化,对B使用零初始化,因此ΔW=BA在训练开始时为零。

对 Transformer 的每一层结构都采用 LoRA 微调的方式,最终可以使得模型微调参数量大大减少。当部署到生产环境中时,只需要计算和存储W=W0​+BA,并像往常一样执行推理。与其它方法相比,没有额外的延迟,因为不需要附加更多的层。

在 Transformer 体系结构中,自注意力机制模块中有四个权重矩阵 (Wq​Wk​Wv​Wo​), MLP 模块中有两个权重矩阵。LoRA 在下游任务微调时,只调整自注意力机制模块的权重,并冻结 MLP 模块。所以对于大型 Transformer,使用 LoRA 可减少高达 2/3 的显存(VRAM)使用量。比如在 GPT-3 175B 上,使用 LoRA 可以将训练期间的 VRAM 消耗从 1.2TB 减少到 350GB。

2.3 LoRA 微调方法的主要优势

  1. 预训练模型参数可以被共享,用于为不同的任务构建许多小的 LoRA 模块。冻结共享模型,并通过替换矩阵 A 和 B 可以有效地切换任务,从而显著降低存储需求和多个任务切换的成本。

  2. 当使用自适应优化器时,由于不需要计算梯度以及保存太多模型参数,LoRA 使得微调效果更好,并将微调的硬件门槛降低了 3 倍。

  3. 低秩分解采用线性设计的方式使得在部署时能够将可训练的参数矩阵与冻结的参数矩阵合并,与完全微调的方法相比,不引入推理延迟。

  4. LoRA 与其它多种微调方法不冲突,可以与其它微调方法相结合,比如下节实训将要介绍的前缀调优方法等。

3. P-tuning v2 微调方法

3.1 P-tuning v2 微调方法的相关技术

传统的微调方法需要微调整个预训练语言模型,对于大语言模型的微调需要大量的资源和时间,急需更加高效的微调方法。理解 P-tuning v2 微调方法,首先需要了解 prefix-tuning 微调方法和 P-tuning v1 微调方法。

3.1.1 Prefix-tuning 微调方法

Prefix-tuning 微调方法在模型中加入 prefix,即连续的特定任务向量,微调时只优化这一小段参数。对于条件生成任务,如下图所示,其输入是文本x,输出是序列y

在上图中,z=[x;y]xy的拼接,Xidx​Yidx​表示序列的索引,hi​∈Rd表示每个时刻i下的激活值,hi​=[hi​(1);...;hi​(n)]表示当前时刻所有层输出向量的拼接,hi​(j)是时刻i的第j层 Transformer 的输出,于是自回归语言模型计算每一时刻的输出hi​即:

hi​=LMϕ​(zi​,h<i​)hi​=LMϕ​(zi​,h<i​)hi​=LMϕ​(zi​,h<i​)

hi​的最后一层用来计算下一个词的分布:

pϕ​(zi+1​∣h≤i​)=softmax(Wϕ​hi​(n))pϕ​(zi+1​∣h≤i​)=softmax(Wϕ​hi​(n))pϕ​(zi+1​∣h≤i​)=softmax(Wϕ​hi​(n))

其中ϕ是语言模型的参数。在自回归语言模型前添加 prefix 后,z=[PREFIX;x;y]或者z=[PREFIX;x;PREFIX;y]Pidx​表示 prefix 的索引,|Pidx​|表示 prefix 的长度。Prefix-tuning 通过初始化可训练矩阵Pθ​(维度为∣Pidx​×dim(hi​)∣) 来存储 prefix 参数:

hi​={Pθ​[i,:],ifi∈Pidx​LMϕ​(zi​,h<i​),otherwise​

训练对象与 Fine-tuning 相同,但语言模型的参数ϕ固定,仅 prefix 参数θ是可训练的参数。因此hi​是可训练的Pθ​的函数。

3.1.2 P-tuning v1 微调方法

P-tuning v1 微调方法是将 Prompt 加入到微调过程中,只对 Prompt 部分的参数进行训练,而语言模型的参数固定不变。如下图所示:

P-tuning v1 设计一个自动的生成连续 prompt 的方法来提升模型的微调效果。由上图,P-tuning v1 的模版可以用下面公式表示:

h0​,...,hi​,e(x),hi+1​,...,hm​,e(y){h0​,...,hi​,e(x),hi+1​,...,hm​,e(y)}h0​,...,hi​,e(x),hi+1​,...,hm​,e(y)

其中h代表 P-tuning v1 的连续 prompt 表征,e代表一个预训练的语言模型,x代表数据的原始输入,y代表数据的标签。在面对下游任务微调是,通过优化h的参数来进行模型微调:

h0:m​=arghmin​L(M(x,y))h^0:m​=arghmin​L(M(x,y))h0:m​=arghmin​L(M(x,y))

3.1.3 存在不足

P-tuning v1 微调方法缺少普遍性。实验表明,当模型规模超过 100 亿个参数时,P-tuning v1 可以与全参数微调方法相媲美,但对于那些较小的模型,P-tuning v1 方法和全参数微调方法的表现有很大差异,效果很差。同时,P-tuning v1 缺少跨任务的通用性,在序列标注任务中的有效性没有得到验证。序列标注需要预测一连串的标签,而且大都是无实际意义的标签,对于 P-tuning v1 微调方法极具挑战。此外,当模型层数很深时,微调时模型的稳定性难以保证。模型层数越深,第一层输入的 prompt 对后面的影响难以预估。

3.2 P-tuning v2 微调方法的原理

P-tuning v2 微调方法是 P-tuning v1 微调方法的改进版,同时借鉴了 prefix-tuning 微调的方法。如下图所示:

与 P-tuning v1 微调方法相比,P-tuning v2 微调方法采用了 prefix-tuning 的做法,在输入前面的每一层都加入可微调的参数。在 prefix 部分,每一层的 transformer 的 embedding 输入都需要被微调,而 P-tuning v1 只在第一层进行微调。同时,对于 prefix 部分,每一层 transformer 的输入不是从上一层输出,而是随机初始化的 embedding 作为输入。

此外,P-Tuning v2 还包括以下改进:

  • 移除 Reparamerization 加速训练方式;
  • 采用多任务学习优化:基于多任务数据集的 Prompt 进行预训练,然后再适配的下游任务。
  • 舍弃词汇 Mapping 的 Verbalizer 的使用,重新利用 [CLS] 和字符标签,跟传统微调方法一样利用 cls 或者 token 的输出做自然语言理解,以增强通用性,可以适配到序列标注任务。

3.3 P-tuning v2 微调方法优点

P-tuning v2 微调方法解决了 P-tuning v1 方法的缺陷,是一种参数高效的大语言模型微调方法。

  • P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示模型参数量,纵坐标表示微调效果):

  • 将 Prompt tuning 技术首次拓展至序列标注等复杂的 NLU 任务上,而 P-tuning v1 在此任务上无法运作。

4. Freeze 监督微调方法

4.1 Freeze 微调方法的概念

Freeze 方法,即参数冻结,对原始模型部分参数进行冻结操作,仅训练部分参数,以达到在单卡或不进行 TP 或 PP 操作,就可以对大模型进行训练。在语言模型模型微调中,Freeze 微调方法仅微调 Transformer 后几层的全连接层参数,而冻结其它所有参数。

4.2 Freeze 微调方法的原理

Freeze 微调方法为什么只微调 Transformer 后几层的全连接层参数呢?下面对其原因进行展开讲述。

Transformer 模型主要由自注意力层和全连接层(FF 层)构成。对于 Transformer 的每一层结构,自注意力层的参数量为4⋅d2,即WQWQWQWQ ∈Rd×d;FF 层的参数量为8⋅d2,即W1​∈Rd×4d,W2​∈Rd×4d。因此 FF 层占据了模型的32​的参数,具有重要的研究价值。Transformer 的全连接层网络结构图如下图所示:

Transformer 的 FF 层可以视为一个 key-value memory,其中每一层的 key 用于捕获输入序列的特征,value 可以基于 key 捕获的特征,给出下一个 token 的词表分布。Transformer 每一层的 FF 层是由多个 key-value 组合而成,然后结合残差连接对每层结果细化,最终产生模型的预测结果。FF 层的公式可以表示为:

FF(x)=f(x⋅KT)⋅VFF(x)=f(x⋅KT)⋅VFF(x)=f(x⋅KT)⋅V

其中K,V∈Rdm​×d是可训练的参数矩阵,f是非线性激活函数,如 ReLU。

此外,实验表明,Transformer 的浅层倾向于提取出浅层特征,深层倾向于提取语义特征,如下图所示。层数越深提取的语义特征所占的比例越重。

对于各类不同的 NLP 任务,浅层特征往往是具有 “共性”,而主要区别在于各自深层次的语义特征。因此,通过仅微调 Transformer 后几层的全连接层参数,在保证参数高效微调的前提下,可以最大程度的发挥大语言模型的微调作用。

4.3 Freeze 微调方法的优势

  • 大量减少了大语言模型的微调参数,是一种参数高效的微调方法;
  • 由于只需微调高层特征,加快了模型的收敛,节约了微调的时间;
  • 最大程度地保留了大语言模型预训练所学习到的语言的 “共性”,可解释性较强。

5.关键知识点总结

  1. SFT监督微调时监督微调时,学习率通常会设置得很小

常见误区:1.监督微调需要大量的训练时间和数据 2.监督微调将复制源模型的所有参数至目标模型 3.监督微调只需要几十条监督数据即可

  1. 监督微调常见任务:1.用中文预训练BERT模型完成中文实体识别任务 2.训练语言模型GPT3 3.UIE模型在垂直领域的数据集上微调

常见误区:在ImageNet上的预训练的模型再来训练目标检测任务 (则不是)

  1. 目前,主流的SFT监督方法包括:LoRA、P-tuning v2、Freeze

  2. LoRA微调方法预训练的模型参数不参与微调,LoRA微调方法一般会在各层新增参数,LoRA微调方法的核心思想是利用高阶矩阵秩的分解来减少微调参数量

  3. LoRA微调方法的优势:减少大语言预训练模型微调的参数量、节省成本、能取得与全模型微调类似的效果

  4. LoRA微调方法不会 对Transformer的每个权重矩阵采用秩分解。

  5. P-tuning v2微调方法是在P-tuning v1的基础上引入了prefix-tuning的思想

常见误区:1.P-tuning v1微调方法能微调实体识别的任务、2.P-tuning v1微调方法在效果上可以媲美全参数微调的方式 3.P-tuning v2微调方法在自然语言理解任务上表现不佳

  1. P-tuning v2微调方法原理方面:1.P-tuning v2微调方法在transformer的每一层都加入了prefix、2.P-tuning v2微调方法采用了多任务学习、3.P-tuning v2微调方法prefix部分的参数不是由上一层的prefix输出来输入

常见误区:P-tuning v2微调方法微调的参数对象是每一层离散表示的prefix

  1. P-tuning v2微调方法解决了P-tuning v1微调方法中序列标注任务不佳、普遍性很差等问题。

  2. Freeze微调优点:1.Freeze微调方法是一种参数高效的微调方法 2.大语言模型的后几层网络主要提取的是语义特征,前几层主要提取的是文本的表层特征 3.Transformer的全连接层参数量多于自注意力层参数量

https://juejin.cn/post/7256104538231849019

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 的相关文章

  • AAAI 2024 一作讲者招募 | 持续报名中

    点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入 我们诚挚地邀请您来AI TIME分享您发表在AAAI 2024的工作 请您扫码填写以下问卷 如内容合适我们将会与您沟通相关分享事宜 AAAI 2024预讲会计划时间 2024年1
  • 【信道估计】【MIMO】【FBMC】未来移动通信的滤波器组多载波调制方案(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码及文章
  • 用通俗易懂的方式讲解:图解 Transformer 架构

    文章目录 用通俗易懂方式讲解系列 1 导语 2 正文开始 现在我们开始 编码 从宏观视角看自注意力机制 从微观视角看自注意力机制 通过矩阵运算实现自注意力机制
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain

    本文介绍了 LangChain 框架 它能够将大型语言模型与其他计算或知识来源相结合 从而实现功能更加强大的应用 接着 对LangChain的关键概念进行了详细说明 并基于该框架进行了一些案例尝试 旨在帮助读者更轻松地理解 LangChai
  • 【路径规划】基于A*算法路径规划研究(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码实现
  • 用CHAT写一份标题为职业教育教师教学能力提升培训总结

    CHAT回复 标题 职业教育教师教学能力提升培训总结 一 活动概述 本次由学校组织的职业教育教师教学能力提升培训于8月15日至8月20日顺利进行 来自全校的60位职业教育教师参与了此次培训 主讲人为享有盛名的教育专家马丁先生 二 培训内容与
  • Soul App:年轻人的社交状态,还有多少种可能?

    查尔斯 狄更斯在 双城记 的开篇写下 这是最好的时代 这是最坏的时代 这是智慧的时代 这是愚蠢的时代 这是信仰的时期 这是怀疑的时期 人们面前有着各样事物 人们面前一无所有 既然万事万物都和狄更斯所说般 好坏参半 那又何必执着于过去 苦恼于
  • 什么是充放电振子理论?

    CHAT回复 充放电振子模型 Charging Reversal Oscillator Model 是一种解释ENSO现象的理论模型 这个模型把ENSO现象比喻成一个 热力学振荡系统 在这个模型中 ENSO现象由三个组成部分 充电 Char
  • 基于java的ssh医院在线挂号系统设计与实现

    基于java的ssh医院在线挂号系统设计与实现 I 引言 A 研究背景和动机 基于Java的SSH医院在线挂号系统设计与实现的研究背景和动机 随着信息技术的迅速发展和应用 医院在线挂号系统已成为医院管理的重要组成部分 传统的挂号方式存在许多
  • 利用CHAT上传文件的操作

    问CHAT autox js ui 上传框 CHAT回复 上传文件的操作如果是在应用界面中的话 由于Android对于文件权限的限制 你可能不能直接模拟点击选择文件 一般来说有两种常见的解决方案 一种是使用intent来模拟发送一个文件路径
  • 基于opencv的大米计数统计(详细处理流程+代码)

    在我每周的标准作业清单中 有一项是编写计算机视觉算法来计算该图像中米粒的数量 因此 当我的一个好朋友M给我发了一张纸上的扁豆照片 显然是受到上述转发的启发 请我帮他数一下谷物的数量时 它勾起了我怀旧的回忆 因此 我在我的旧硬盘上寻找很久以前
  • 毕业设计- 基于深度学习的小样本时间序列预测算法 - Attention

    目录 前言 课题背景与意义 课题实现 一 数据集 二 设计思路 三 相关代码示例 最后 前言 大四是整个大学期间最忙碌的时光 一边要忙着准备考研 考公 考教资或者实习为毕业后面临的就业升学做准备 一边要为毕业设计耗费大量精力 近几年各个学校
  • 台积电再被坑,2纳米光刻机优先给Intel和三星,美国太霸道了

    外媒指出今年ASML的10台2纳米光刻机分配已经基本确定了 Intel拿到6台 三星获得3台 台积电只能得到一台 考虑到美国对ASML的强大影响力 外媒的这些消息应该有较高的可信性 Intel在先进工艺制程方面 自从2014年量产14纳米之
  • 机器学习算法实战案例:时间序列数据最全的预处理方法总结

    文章目录 1 缺失值处理 1 1 统计缺失值 1 2 删除缺失值 1 3 指定值填充 1 4 均值 中位数 众数填充
  • 如何用GPT进行论文润色与改写?

    详情点击链接 如何用GPT GPT4进行论文润色与改写 一OpenAI 1 最新大模型GPT 4 Turbo 2 最新发布的高级数据分析 AI画图 图像识别 文档API 3 GPT Store 4 从0到1创建自己的GPT应用 5 模型Ge
  • AI帮助终结全球饥饿问题

    全球饥饿问题是牵动人心的头等大事 5月28日是 世界饥饿日 这一问题更值得关注 让人人都能吃饱的想法不仅令人向往 而且很快就会变成现实 与大多数新事物引进一样 对于在控制世界粮食供应这样复杂的任务中AI究竟应该发挥多大的作用 人们还踟蹰不前
  • AI-基于Langchain-Chatchat和chatglm3-6b部署私有本地知识库

    目录 参考 概述 部署安装 环境准备 原理和流程图 一键启动 启动WebAPI 服务 启动WebUI服务 Docker部署
  • 回望计算机视觉会议ICCV的31年

    作者 原野寻踪 编辑 汽车人 原文链接 https zhuanlan zhihu com p 670393313 点击下方 卡片 关注 自动驾驶之心 公众号 ADAS巨卷干货 即可获取 点击进入 自动驾驶之心 全栈算法 技术交流群 本文只做
  • 国产化率100%,北斗导航单日定位4500亿次,外媒:GPS将被淘汰

    追赶30年的技术差距 国产卫星导航系统 北斗 开始扬眉吐气 数据显示 北斗导航目前单日定位量达4500亿次 已经获得100多个国家的合作意向 甚至国际民航也摒弃以往 独宠 GPS的惯例 将北斗纳入参考标准 对此 有媒体直言 GPS多年来的技
  • 自动驾驶离不开的仿真!Carla-Autoware联合仿真全栈教程

    随着自动驾驶技术的不断发展 研发技术人员开始面对一系列复杂挑战 特别是在确保系统安全性 处理复杂交通场景以及优化算法性能等方面 这些挑战中 尤其突出的是所谓的 长尾问题 即那些在实际道路测试中难以遇到的罕见或异常驾驶情况 这些问题暴露了实车

随机推荐

  • DestroyList() 和ClearList() 一个使用引用,一个直接传参

    在高一凡编写的算法书P20页写着 销毁链表时用了引用 void DestroyList LinkList L LinkList q while L q L gt next free L L q 清空链表没有使用引用 void ClearLi
  • element UI 图片上传/文件上传

  • 2021-04-16

    喜欢西游记的同学肯定都知道悟空偷吃蟠桃的故事 你们一定都觉得这猴子太闹腾了 其实你们是有所不知 悟空是在研究一个数学问题 什么问题 他研究的问题是蟠桃一共有多少个 不过 到最后 他还是没能解决这个难题 呵呵 当时的情况是这样的 第一天悟空吃
  • yarn的常用命令以及与npm的对比

    yarn安装 在yarn的官网下载yarn并安装或者 npm i yarn g 查看版本 Yarn v 1 初始化一个新项目 yarn init 与 npm init 一样通过交互式会话创建一个 package json yarn init
  • 实施工程师的必修课(一)-----项目启动前的知识整理学习-工作流程

    项目启动前的知识整理学习 工作流程 第一步 项目启动 第二步 调研开始 第三步 需求总结 第四步 数据和材料的收集 第五步 需求调研结束 第六步 上线试运行 第七步 项目验收 以lims系统为例 实验室信息管理系统 LIMS Laborat
  • MySQL存储原理

    MySQL中的数据组织是以页为单位的 每一页中的信息包括 页头 记录页面的控制信息 共占56字节 包括页的左右兄弟页面指针 用来连接相邻的页面 页面空间使用情况等 虚记录 最大虚记录 比页内最大主键还大 最小虚记录 比页内最小主键还小 记录
  • chatgpt论文润色

    https github com binary husky chatgpt academic
  • 开源库nothings/stb的介绍及使用(图像方面)

    GitHub上有个开源的stb库 Star数已过万 地址为https github com nothings stb 为何叫stb 是用的作者名字的缩写Sean T Barrett 此库仅包含头文件 除stretchy buffer h外
  • 佛祖保佑 永不宕机 永无BUG C语言 串口打印

    字符串如下 char log oo0oo r n o8888888o r n 88 88 r n r n 0 0 r n r n r n
  • ChromeDriver最新版(116.x及最新)下载途径分享

    首先查看version 在地址栏输入chrome version 最新版 官方地址 https googlechromelabs github io chrome for testing 选择合适的下载即可 Old 官网 https chr
  • 关于postman使用技巧

    一 get方法 只在此显示下有token的查询方法 一般的get查询直接浏览器地址即可 二 post请求 1 在headers中设置下Content Type为application json 2 在Body中输入正确的json格式即可 三
  • 从零实现DevOps(二):Centos7操作系统-环境变量配置(JDK、Maven、Node)

    1 JDK安装并配置环境变量 由于Jenkins官网要求 从2 357版本后必须用java11或17才可以运行 java8运行会报错 所以我们直接安装jdk11 1 下载地址 往下拉可以找到Java11 Java Downloads Ora
  • C语言速成指南

    说明一下吧 这篇文章是用于c语言有目的的速成 有点基础的看一看也可以当复习 如果想要真正学好c语言 建议看一下之前写的详细教程 这篇文章会有很多对于考试没有多大帮助的东西被忽略掉 临近期末祝大家考试顺利 我也会不断完善这篇文章的 欢迎各路大
  • SQLMap 注入 DVWA实战

    一 low级别 1 进入dvwa界面输入1 点击Submit 得到链接 http localhost dvwa master vulnerabilities sqli id 1 Submit Submit 2 我们用sqlmap进行爆破 s
  • springboot 配置多个请求服务代理

    springboot 配置服务代理 有时候 我们可能有下边这样的需求 即 针对于分布式服务 我们会有多种业务接口服务 但是服务器上可能只要求开放一个服务的端口 比如上图的restA项目端口是对外开放的 但是restB项目端口并未对外开放 这
  • StringBuffer与StringBuilder的区别

    StringBuffer与StringBuilder的区别 一 String StringBuffer与StringBuilder String字符串常量 String的值是不可变的 这就导致每次对String的操作都会生成新的String
  • 运算符优先级

    C语言中 运算符除了常见的三大类 算术运算符 关系运算符与逻辑运算符之外 还有一些用于完成特殊任务的运算符 运算符的运算优先级共分为15 级 1 级最高 15 级最低 在表达式中 优先级较高的先于优先级较低的进行运算 而在一个运算量两侧的运
  • 我爱Java系列之《JavaEE学习笔记day12》---【缓冲流、转换流、序列/反序列化流、打印流】

    一 缓冲流 1 字节缓冲输出流java io BufferedOutputStream extends OutputStream 高效字节输出流 写入文件 目标文件 底层定义个了一个长度为8192的数组 提高效率 常用方法 write in
  • lvm扩容是否影响oracle,linux下对LVM扩容

    扩容原因 dev vg rhel64 lv root 占用率达到100 导致部分应用无法继续运行 操作过程 1 关闭系统 在虚拟机中添加一块10G的磁盘 2 查看新添加磁盘对应的名称 email protected fdisk cul 得知
  • 人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法

    1 SFT 监督微调 1 1 SFT 监督微调基本概念 SFT Supervised Fine Tuning 监督微调是指在源数据集上预训练一个神经网络模型 即源模型 然后创建一个新的神经网络模型 即目标模型 目标模型复制了源模型上除了输出