EMO实战:使用EMO实现图像分类任务(二)

2023-11-20


在上一篇文章中完成了前期的准备工作,见链接:
EMO实战:使用EMO实现图像分类任务(一)
这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.emo import EMO_1M
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':
   #创建保存模型的文件夹
    file_dir = 'checkpoints/emo/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir,exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 300
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True #是否开启dp方式的多卡训练
    classes = 12
    resume =None
    CLIP_GRAD = 5.0
    Best_ACC = 0 #记录最高得分
    use_ema=True
    model_ema_decay=0.9998
    start_epoch=1
    seed=1
    seed_everything(seed)

设置存放权重文件的文件夹,如果文件夹存在删除再建立。

接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。
注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

 file_dir = 'checkpoints/MobileViG'

这是存放seaformer模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
    ])
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的CloFormer模型输入是224×224的大小,所以要Resize为224×224。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代。pin_memory设置为True,可以加快运行速度。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

   #设置模型
    model_ft = EMO_1M(pretrained=False)
    model_ft.reset_classifier(classes)
    # num_fr = model_ft.dist_head.in_channels
    # model_ft.dist_head = nn.Conv2d(num_fr, classes, 1, bias=True)
    print(model_ft)
    if resume:
        model=torch.load(resume)
        print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC=model['Best_ACC']
        start_epoch=model['epoch']+1
    model_ft.to(DEVICE)
  • 设置模型为EMO_1M,由于没有预训练模型,所以将pretrained设置为False。使用reset_classifier方法修改classes。

  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。

  • 如果模型输出是classes的长度,则表示修改正确了。

在这里插入图片描述

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None
  • use_amp为True,则开启混合精度训练,声明pytorch自带的混合精度 torch.cuda.amp.GradScaler()。
  • 检测可用显卡的数量,如果大于1,并且开启多卡训练的情况下,则要用torch.nn.DataParallel加载模型,开启多卡训练。
  • 如果使用ema,则注册ema
    注:torch.nn.DataParallel方式,默认不能开启混合精度训练的,如果想要开启混合精度训练,则需要在模型的forward前面加上@autocast()函数。

在这里插入图片描述

如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device,                                                                                 non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss =loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []
    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg,  acc,  acc5_meter.avg))
    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {
            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC':Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

EMO测试结果:

在这里插入图片描述

在这里插入图片描述

关于EMA设置为True时,不上分的问题

由于,预训练比较难下载,所以,我没有使用。但是,会带来一个问题,就是在使用EMA的时候,验证集不上分!这时候了,先将EMA设置为False,训练两个epoch。你会发现验证集的ACC上分了。

接下来,将resume设置为最后的epoch模型,将EMA设置为True就可以继续上分了。

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

EMO_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/emo/best.pth')
model.eval()
model.to(DEVICE)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 加载model,switch_to_deploy函数,切换成推理模式,进一步提高运行速度,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

热力图可视化展示

新建脚本cam_image.py,插入如下代码:

import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \
    ScoreCAM, \
    GradCAMPlusPlus, \
    AblationCAM, \
    XGradCAM, \
    EigenCAM, \
    EigenGradCAM, \
    LayerCAM, \
    FullGrad

from pytorch_grad_cam.utils.image import show_cam_on_image, \
    deprocess_image, \
    preprocess_image


import timm
from torch.autograd import Variable


def reshape_transform_resmlp(tensor, height=14, width=14):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_swin(tensor, height=7, width=7):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_vit(tensor, height=14, width=14):
    result = tensor[:, 1:, :].reshape(tensor.size(0),
                                      height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--use-cuda', action='store_true', default=False,
                        help='Use NVIDIA GPU acceleration')
    parser.add_argument(
        '--image-path',
        type=str,
        default="./test/0bf7bfb05.png",
        help='Input image path')
    parser.add_argument(
        '--output-image-path',
        type=str,
        default=None,
        help='Output image path')
    parser.add_argument(
        '--models',
        type=str,
        default='emo',
        help='models name')
    parser.add_argument('--aug_smooth', action='store_true',
                        help='Apply test time augmentation to smooth the CAM')
    parser.add_argument(
        '--eigen_smooth',
        action='store_true',
        help='Reduce noise by taking the first principle componenet'
             'of cam_weights*activations')
    parser.add_argument('--method', type=str, default='gradcam++',
                        choices=['gradcam', 'gradcam++',
                                 'scorecam', 'xgradcam',
                                 'ablationcam', 'eigencam',
                                 'eigengradcam', 'layercam', 'fullgrad'],
                        help='Can be gradcam/gradcam++/scorecam/xgradcam'
                             '/ablationcam/eigencam/eigengradcam/layercam')

    args = parser.parse_args()
    args.use_cuda = args.use_cuda and torch.cuda.is_available()
    if args.use_cuda:
        print('Using GPU for acceleration')
    else:
        print('Using CPU for computation')

    return args


if __name__ == '__main__':
    args = get_args()
    methods = \
        {"gradcam": GradCAM,
         "scorecam": ScoreCAM,
         "gradcam++": GradCAMPlusPlus,
         "ablationcam": AblationCAM,
         "xgradcam": XGradCAM,
         "eigencam": EigenCAM,
         "eigengradcam": EigenGradCAM,
         "layercam": LayerCAM,
         "fullgrad": FullGrad}

    DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = torch.load('checkpoints/emo/best.pth', map_location='cpu')
    print(model)
    reshape_transform = None
    # print(models.stages[-1])
    if 'emo' in args.models:
        target_layers = [model.stage4[-1]]

    print(target_layers)
    model.eval()
    model.to(DEVICE)
    img_path = args.image_path
    if args.image_path:
        img_path = args.image_path
    else:
        import requests

        image_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'
        img_path = image_url.split('/')[-1]
        if os.path.exists(img_path):
            img_data = requests.get(image_url).content
            with open(img_path, 'wb') as handler:
                handler.write(img_data)

    if args.output_image_path:
        save_name = args.output_image_path
    else:
        img_type = img_path.split('.')[-1]
        it_len = len(img_type)
        save_name = img_path.split('/')[-1][:-(it_len + 1)]
        save_name = save_name + '_' + args.models + '.' + img_type

    img = cv2.imread(img_path, 1)
    img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
    if args.models == 'resize':
        cv2.imwrite(save_name, img)
    else:
        rgb_img = img[:, :, ::-1]
        rgb_img = np.float32(rgb_img) / 255
        input_tensor = Variable(preprocess_image(rgb_img,
                                                 mean=[0.485, 0.456, 0.406],
                                                 std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)
        targets = None
        cam_algorithm = methods[args.method]
        with cam_algorithm(model=model,
                           target_layers=target_layers,
                           use_cuda=args.use_cuda,
                           reshape_transform=reshape_transform,
                           ) as cam:

            cam.batch_size = 1
            grayscale_cam = cam(input_tensor=input_tensor,
                                targets=targets,
                                aug_smooth=args.aug_smooth,
                                eigen_smooth=args.eigen_smooth)

            grayscale_cam = grayscale_cam[0, :]
            cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)

        cv2.imwrite(save_name, cam_image)


对get_args函数的参数进行设置:

  • use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。
  • image-path:待测图片的路径,这个是必填项。
  • model:必填项,默认值:mobilevig。
    效果如下图所示:
    在这里插入图片描述

完整的代码

完整的代码:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/88133994

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

EMO实战:使用EMO实现图像分类任务(二) 的相关文章

  • 检查 PyTorch 张量在 epsilon 内是否相等

    如何检查两个 PyTorch 张量在语义上是否相等 考虑到浮点错误 我想知道元素是否仅相差一个小的 epsilon 值 在撰写本文时 这是最新稳定版本 0 4 1 中的一个未记录的函数 但文档位于master unstable branch
  • Cuda和pytorch内存使用情况

    我在用Cuda and Pytorch 1 4 0 当我尝试增加batch size 我遇到以下错误 CUDA out of memory Tried to allocate 20 00 MiB GPU 0 4 00 GiB total c
  • 二维数组的按行 numpy.isin [重复]

    这个问题在这里已经有答案了 我有两个数组 A np array 3 1 4 1 1 4 B np array 0 1 5 2 4 5 2 3 5 是否可以使用numpy isin二维数组按行排列 我想检查一下是否A i j is in B
  • Pytorch:了解 nn.Module 类内部如何工作

    一般来说 一个nn Module可以由子类继承 如下所示 def init weights m if type m nn Linear torch nn init xavier uniform m weight class LinearRe
  • 通过 Conda 安装 PyTorch

    目标 使用 pytorch 和 torchvision 创建 conda 环境 Anaconda 导航器 1 8 3 python 3 6 MacOS 10 13 4 我尝试过的 在Navigator中 创建了一个新环境 尝试安装 pyto
  • 如何在 google colab 中运行 matlab .m 文件

    我目前正在尝试运行这个存储库https github com Fanziapril mvfnet https github com Fanziapril mvfnet这需要一个步骤 Run the Matlab ModelGeneratio
  • PyTorch 教程错误训练分类器

    我刚刚开始 PyTorch 教程使用 PyTorch 进行深度学习 60 分钟闪电战我应该补充一点 我之前没有编写过任何 python 但其他语言 如 Java 现在 我的代码看起来像 import torch import torchvi
  • torchvision.transforms.Normalize 是如何操作的?

    我不明白如何标准化Pytorch works 我想将平均值设置为0和标准差1跨越张量中的所有列x形状的 2 2 3 一个简单的例子 gt gt gt x torch tensor 1 2 3 4 5 6 7 8 9 10 11 12 gt
  • 使用 KL 散度时,变分自动编码器为每个输入 mnist 图像提供相同的输出图像

    当不使用 KL 散度项时 VAE 几乎完美地重建 mnist 图像 但在提供随机噪声时无法正确生成新图像 当使用 KL 散度项时 VAE 在重建和生成图像时都会给出相同的奇怪输出 这是损失函数的 pytorch 代码 def loss fu
  • 尝试理解 Pytorch 的 LSTM 实现

    我有一个包含 1000 个示例的数据集 其中每个示例都有5特征 a b c d e 我想喂7LSTM 的示例 以便它预测第 8 天的特征 a 阅读 nn LSTM 的 Pytorchs 文档 我得出以下结论 input size 5 hid
  • 使 CUDA 内存不足

    我正在尝试训练网络 但我明白了 我将批量大小设置为 300 并收到此错误 但即使我将其减少到 100 我仍然收到此错误 更令人沮丧的是 在 1200 个图像上运行 10 epoch 大约需要 40 分钟 有什么建议吗 错了 我怎样才能加快这
  • BatchNorm 动量约定 PyTorch

    Is the 批归一化动量约定 http pytorch org docs master modules torch nn modules batchnorm html 默认 0 1 与其他库一样正确 例如Tensorflow默认情况下似乎
  • 如何计算 CNN 第一个线性层的维度

    目前 我正在使用 CNN 其中附加了一个完全连接的层 并且我正在使用尺寸为 32x32 的 3 通道图像 我想知道是否有一个一致的公式可以用来计算第一个线性层的输入尺寸和最后一个卷积 最大池层的输入 我希望能够计算第一个线性层的尺寸 仅给出
  • Pytorch ValueError:优化器得到一个空参数列表

    当尝试创建神经网络并使用 Pytorch 对其进行优化时 我得到了 ValueError 优化器得到一个空参数列表 这是代码 import torch nn as nn import torch nn functional as F fro
  • Pytorch Tensor 如何获取元素索引? [复制]

    这个问题在这里已经有答案了 我有 2 个名为x and list它们的定义如下 x torch tensor 3 list torch tensor 1 2 3 4 5 现在我想获取元素的索引x from list 预期输出是一个整数 2
  • 如何使用pytorch构建多任务DNN,例如超过100个任务?

    下面是使用 pytorch 为两个回归任务构建 DNN 的示例代码 这forward函数返回两个输出 x1 x2 用于大量回归 分类任务的网络怎么样 例如 100 或 1000 个输出 对所有输出 例如 x1 x2 x100 进行硬编码绝对
  • 在Pytorch中计算欧几里得范数..理解和实现上的麻烦

    我见过另一个 StackOverflow 线程讨论计算欧几里德范数的各种实现 但我很难理解特定实现的原因 如何工作 该代码可以在 MMD 指标的实现中找到 https github com josipd torch two sample b
  • 如何计算cifar10数据的平均值和标准差

    Pytorch 使用以下值作为 cifar10 数据的平均值和标准差 变换 Normalize 0 5 0 5 0 5 0 5 0 5 0 5 我需要理解计算背后的概念 因为这些数据是 3 通道图像 我不明白什么是相加的 什么是除什么的等等
  • Pytorch 与 joblib 的 autograd 问题

    将 pytorch 的 autograd 与 joblib 混合似乎存在问题 我需要并行获取大量样本的梯度 Joblib 与 pytorch 的其他方面配合良好 但是 与 autograd 混合时会出现错误 我做了一个非常小的例子 显示串行
  • TensorFlow 相当于 PyTorch 的 Transforms.Normalize()

    我正在尝试推断最初在 PyTorch 中构建的 TFLite 模型 我一直在遵循PyTorch 实现 https github com leoxiaobin deep high resolution net pytorch blob 1ee

随机推荐

  • stm32实用篇5:HAL库 DHT11 驱动

    DHT11是很常用的温湿度传感器 时序也比较简单 如下所示 直接给出HAL库的驱动 1 微秒级延时函数 HAL库并没有直接的微秒级延时函数 下面是自己实现的微秒堵塞延时函数 使用定时器TIM3 brief 微秒级延时 void bsp de
  • 格式化时间用了YYYY-MM-dd,元旦当天老板喊我回去改Bug!

    视频福利推荐 2T免费学习视频 内含SSM Spring全家桶 微服务 MySQL MyCat 集群 分布式 中间件 Linux 网络 多线程 Jenkins Nexus Docker ELK等等免费学习视频 持续更新 往期热门文章 1 往
  • Linux面试题1

    一 取出 etc passwd文件中shell出现的次数 问题 下面是一个 etc passwd文件的部分内容 题目要求取出shell并统计次数 shell是指后面的 bin bash sbin nologin等 如下面 bin bash出
  • 主线剧情0.0-Linux学习资源大综合

    Linux 学习资源大综合 对收集到的比较丰富的 Linux 学习相关的资料进行整理 注 如果链接挂了请告诉我 如果链接里的内容被删了那么直接搜文章名字试试也许会搜出来很多转载的 备份 注 在 Github 上的原版文章日后可能会更新 在其
  • 37: 合并区间

    题目 以数组 intervals 表示若干个区间的集合 其中单个区间为 intervals i starti endi 请你合并所有重叠的区间 并返回 一个不重叠的区间数组 该数组需恰好覆盖输入中的所有区间 思路 这道题我的思路完全正确 先
  • 杰理之提示音的使用【篇】

    打开 SDK 对应的 cpu brxx tools ACxxxN config tool 进入配置工具入口 gt 选择编译前配置 工具 gt 提示音配置
  • 经典面试题之new和malloc的区别

    new和malloc的区别是C C 一道经典的面试题 我也遇到过几次 回答的都不是很好 今天特意整理了一下 0 属性 new delete是C 关键字 需要编译器支持 malloc free是库函数 需要头文件支持 1 参数 使用new操作
  • python3 ACM 输入输出

    Python的输入是字符串 所有需要自己转化为对应的类型 strip去掉左右两端的空白符 返回str slipt把字符串按空白符拆开 返回 str map把list里面的值映射到指定类型 返回 type 有多组输入数据 但没有具体的告诉你有
  • 如何在JavaScript中实现链式调用(chaining)?

    聚沙成塔 每天进步一点点 专栏简介 JavaScript中的链式调用 示例 写在最后 专栏简介 前端入门之旅 探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅 这个专栏是为那些对We
  • 程序员思维模式 - 主调试循环

    文章目录 主调试循环 验证在图层中进行 优化循环时间 为什么快速循环更好 短循环时间是通用的吗 一些综合测试是必要的 复杂性是否会导致测试验证循环 救援的暂存环境 结论 仅通过测试进行验证基本上是在仪器上驾驶飞机 而不是能够向外看挡风玻璃
  • 文心千帆为你而来

    1 前言 3月16号百度率先发布了国内第一个人工智能大语言模型 文心一言 文心一言的发布在业界引起了不小的震动 而文心一言的企业服务则由文心千帆大模型平台提供 文心千帆大模型平台是百度智能云打造出来的一站式大模型开发与应用平台 提供包括文心
  • 工业表面缺陷检测数据集汇总

    1 数据集名称 NEU CLS 应用场景 钢材表面 链接 http faculty neu edu cn songkechen zh CN zhym 263269 list 2 数据集名称 elpv dataset 应用场景 太阳能板 链接
  • 什么是Servlet容器?

    在本文中 我写了一些关于Web服务器 Servlet容器以及它与JVM的关系的基本概念 我想表达的是 Servlet容器也仅仅不过是一个Java程序 1 什么是Web服务器 想要知道什么是Servlet容器 我们首先要知道什么是Web服务器
  • 整理了27个Python人工智能库,建议收藏!

    来源丨网络 大家好 我是阳哥 为了大家能够对人工智能常用的 Python 库有一个初步的了解 以选择能够满足自己需求的库进行学习 对目前较为常见的人工智能库进行简要全面的介绍 1 Numpy NumPy Numerical Python 是
  • uni-app打包ios应用后,屏幕无法占满,上下出现黑框

    软件打包后是成功的 功能也都正常 就是打开软件后上下都出现了黑框 整个软件变小了 5s的屏结果运行的是4s的效果 就像ipad运行了iphone软件一样的那种感觉 这是由于ios缺少启动图引起的 勾选通用启动界面即可 在manifest j
  • java工作记录问题总结

    1 注解等同于 controller Component 2 定时器立即执行一次 每小时执行一次 Async 异步 Scheduled fixedRate 1000 60 60 3 double数据量过大时使用 BigDecimal dou
  • windows下安装python的pip指令

    windows下安装python的pip指令 安装pip前 确定Windows下有python和easy install安装包 确定windows系统中有python环境 并将python解释器配置到系统的环境变量中 1 环境变量中添加py
  • 按照公式,将经纬度转为椭球

    目前墨卡托投影的纹理坐标已经绑定 现在转为椭球体 将经纬度中按照公式直接转为椭球上的xyz 即可 也可以参照三维引擎设计创建椭球
  • 基于PyTorch的深度学习--CNN项目代码准备-数据集处理(Extract、Transform和Load)

    本篇文章是翻译 https deeplizard com网站中的关于Pytorch学习的文章 供学习使用 原文地址为 https deeplizard com learn video 8n TGaBZnk4 使用Pytorch进行提取 E
  • EMO实战:使用EMO实现图像分类任务(二)

    文章目录 训练部分 导入项目使用的库 设置随机因子 设置全局参数 图像预处理与增强 读取数据 设置Loss 设置模型 设置优化器和学习率调整策略 设置混合精度 DP多卡 EMA 定义训练和验证函数 训练函数 验证函数 调用训练和验证方法 运