哈希桶——开放定址法

2023-12-04

哈希表的迭代器:

迭代器模板介绍:

template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>

K :关键词类型

T :存储的数据类型

Ref :T& (operator*() 解引用函数的返回类型)

Ptr :T*      (operator->() 使用指针去操作成员)

KeyOfT :是 外面哈希map (哈希map中存的是键值对 键值对的第一个数据就是key 第二个数据就是value 存储的数据) 和 哈希set (哈希set中存的是value )

外部会提供调函数去调用关键词key

Hash :是哈希函数将K关键词转化为hashi哈希桶的位置进行存储 将key转化为整数的函数 为了确定哈希桶的位置

哈希迭代器的成员介绍:

		Node* _node;
		const HashTable<K, T, KeyOfT, Hash>* _pht;

		size_t _hashi;

迭代器中 _node 是实现 operator*(),operator->(),operator!=().

_hashi: 每一次桶的位置 operator++()会运用到进行节点的遍历 记录每次桶的位置方便遍历

_pht: 哈希表获取哈希桶的数据参数,获取哈希表的成员数据,成员函数等,我个人认为这个成员很方便也很重要

哈希表的默认构造:

		__HTIterator(Node* node, HashTable<K, T, KeyOfT, Hash>* pht, size_t hashi)
			:_node(node)
			,_pht(pht)
			,_hashi(hashi)
		{}

		__HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht, size_t hashi)
			:_node(node)
			, _pht(pht)
			, _hashi(hashi)
		{}

利用初始化列表进行初始化,根据外面传的参数类型选择对应的默认构造函数,进行初始化构造。

哈希表迭代器中的操作符重载:

* -> !=

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

!=利用迭代器中存储的_node进行判断 判断是否为同一个指针。

* 对节点数据进行引用

-> 对节点数据地址进行返回 但是Ptr=T* (*和-> 相遇会抵消 所以也是数据)

++

		Self& operator++()
		{
			if (_node->_next)
			{
				// 当前桶还有节点,走到下一个节点
				_node = _node->_next;
			}
			else
			{
				// 当前桶已经走完了,找下一个桶开始
				//KeyOfT kot;
				//Hash hf;
				//size_t hashi = hf(kot(_node->_data)) % _pht._tables.size();
				++_hashi;
				while (_hashi < _pht->_tables.size())
				{
					if (_pht->_tables[_hashi])
					{
						_node = _pht->_tables[_hashi];
						break;
					}

					++_hashi;
				}

				if (_hashi == _pht->_tables.size())
				{
					_node = nullptr;
				}
			}

			return *this;
		}

这里重点解释一下_node->_next为空之后的操作

1,第一个++hashi 为什么?

因为哈希表中的bigin() 会进行哈希桶的遍历 返回第一个不为空的哈希桶 (用该位置的节点,哈希表指针,哈希桶位置进行迭代器的赋值) 但是begin()只会提供第一个不为空的哈希桶位置 不会将哈希桶进行向后遍历 如果该桶的单链表遍历完毕 到末尾nullptr 就应该找下一个通的位置 如果下一个桶的位置也为空 再向后找

第一个++hashi 就是单链表遍历完毕遇到空进行下一个哈希桶的查找
第二个++hashi 是该哈希桶位置本身为空 进行向后的查找

2.找到不为空的哈希表位置之后 再进单链表的迭代遍历

返回的就是迭代器*this

哈希表模板的介绍:

template<class K, class T, class KeyOfT, class Hash>

K:关键词类型

T:存储数据类型

KeyOfT:外部提取key所配的专用函数

Hash: 将key转化为整数的函数 为了确定哈希桶的位置

哈希表中的友元:

		template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
		friend struct __HTIterator;

由于哈希表迭代器成员中存在哈希表指针,二哈希表指针会访问哈希表成员,所以将哈希表迭代器设置为哈希表的友元。

哈希表中类型的typedef

		typedef __HTIterator<K, T, T&, T*, KeyOfT, Hash> iterator;
		typedef __HTIterator<K, T, const T&, const T*, KeyOfT, Hash> const_iterator;

根据外部的调用进行对应的调用。const迭代器就调用const对应的迭代器。

哈希表的节点:

	template<class T>
	struct HashNode
	{
		HashNode<T>* _next;
		T _data;

		HashNode(const T& data)
			:_data(data)
			,_next(nullptr)
		{}
	};

由于哈希桶是单链表构成的所以类节点的成员为 该节点类型的指针 和数据 ,将节点初始化为空。

哈希表的查找:

		iterator Find(const K& key)
		{
			Hash hf;
			KeyOfT kot;

			size_t hashi = hf(key) % _tables.size();
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					return iterator(cur, this, hashi);
				}

				cur = cur->_next;
			}

			return end();
		}

这里就是简单的单链表遍历查找,利用哈希函数和KeyOfT外部函数进行关键词的查找,存在返回迭代器,不存在返回end().

哈希表的插入:

		pair<iterator, bool> Insert(const T& data)
		{
			Hash hf;
			KeyOfT kot;

			iterator it = Find(kot(data));
			if (it != end())
				return make_pair(it, false);

			// 负载因子最大到1
			if (_n == _tables.size())
			{
				vector<Node*> newTables;
				newTables.resize(_tables.size() * 2, nullptr);
				// 遍历旧表
				for (size_t i = 0; i < _tables.size(); i++)
				{
					Node* cur = _tables[i];
					while(cur)
					{
						Node* next = cur->_next;

						// 挪动到映射的新表
						size_t hashi = hf(kot(cur->_data)) % newTables.size();
						cur->_next = newTables[i];
						newTables[i] = cur;

						cur = next;
					}

					_tables[i] = nullptr;
				}

				_tables.swap(newTables);
			}

			size_t hashi = hf(kot(data)) % _tables.size();
			Node* newnode = new Node(data);

			// 头插
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;

			return make_pair(iterator(newnode, this, hashi), true);
		}

首先判断该关键词是存在,如果存在就返回存在数据位置的迭代器和false;

这里面的扩容是插入元素与哈希桶的数量相同就扩容,这里不是固定的,你可以判断每个哈希桶的大小最大不超过多少,再去扩容,这里方法很自由,没有固定的。

对于新表元素的插入,新表元素的插入方法与旧表类似,所以就可以直接赋用旧表的插入方法,这里很容易被看作递归,但不是递归,是代码赋用。

将新表插入完毕之后 再将旧表数据与新表数据进行交换,这里新表出了作用域就调用其对应的析构函数进行析构。大大的方便。

插入成功返回新节点位置的迭代器迭代器进行赋值(存在时的赋值在find函数中有涉及),和true.

哈希表的析构与构造:

		HashTable()
		{
			_tables.resize(10);
		}

		~HashTable()
		{
			for (size_t i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}
				_tables[i] = nullptr;
			}
		}

哈希表的默认构造函数:对vector进行初始容量的 扩容;

哈希表的析构函数:从第一个桶位置开始进行遍历 跳过nullptr位置 将存在数据的位置进行单链表遍历删除 删除完单链表之后 再将该位置置为空。

哈希表的删除:

哈希表节点的删除可以分为两种情况:

第一种,删除哈希桶的头节点

第二种,删除除头结点的任意节点

通过哈希函数将key转换为关键词,再遍历哈希桶(单链表)利用KeyOfT将数据进行提取找到要删除的数据 再进行上面两种情况的判断。

		bool Erase(const K& key)
		{
			Hash hf;
			KeyOfT kot;

			size_t hashi = hf(key) % _tables.size();
			Node* prev = nullptr;
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}
					delete cur;

					return true;
				}

				prev = cur;
				cur = cur->_next;
			}

			return false;
		}

哈希桶长度,数量,最大长度,平均桶长的统计:

		void Some()
		{
			size_t bucketSize = 0;
			size_t maxBucketLen = 0;
			size_t sum = 0;
			double averageBucketLen = 0;

			for (size_t i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				if (cur)
				{
					++bucketSize;
				}

				size_t bucketLen = 0;
				while (cur)
				{
					++bucketLen;
					cur = cur->_next;
				}

				sum += bucketLen;

				if (bucketLen > maxBucketLen)
				{
					maxBucketLen = bucketLen;
				}
			}

			averageBucketLen = (double)sum / (double)bucketSize;

			printf("all bucketSize:%d\n", _tables.size());
			printf("bucketSize:%d\n", bucketSize);
			printf("maxBucketLen:%d\n", maxBucketLen);
			printf("averageBucketLen:%lf\n\n", averageBucketLen);
		}

上面代码就是简单的遍历,不做过多讲解。

完整代码:

namespace hash_bucket
{
	template<class T>
	struct HashNode
	{
		HashNode<T>* _next;
		T _data;

		HashNode(const T& data)
			:_data(data)
			,_next(nullptr)
		{}
	};

	// 前置声明
	template<class K, class T, class KeyOfT, class Hash>
	class HashTable;

	template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
	struct __HTIterator
	{
		typedef HashNode<T> Node;
		typedef __HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;
		Node* _node;
		const HashTable<K, T, KeyOfT, Hash>* _pht;

		// vector<Node*> * _ptb;

		size_t _hashi;

		__HTIterator(Node* node, HashTable<K, T, KeyOfT, Hash>* pht, size_t hashi)
			:_node(node)
			,_pht(pht)
			,_hashi(hashi)
		{}

		__HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht, size_t hashi)
			:_node(node)
			, _pht(pht)
			, _hashi(hashi)
		{}

		Self& operator++()
		{
			if (_node->_next)
			{
				// 当前桶还有节点,走到下一个节点
				_node = _node->_next;
			}
			else
			{
				// 当前桶已经走完了,找下一个桶开始
				//KeyOfT kot;
				//Hash hf;
				//size_t hashi = hf(kot(_node->_data)) % _pht._tables.size();
				++_hashi;
				while (_hashi < _pht->_tables.size())
				{
					if (_pht->_tables[_hashi])
					{
						_node = _pht->_tables[_hashi];
						break;
					}

					++_hashi;
				}

				if (_hashi == _pht->_tables.size())
				{
					_node = nullptr;
				}
			}

			return *this;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}
	};

	// unordered_set -> Hashtable<K, K>
	// unordered_map -> Hashtable<K, pair<K, V>>
	template<class K, class T, class KeyOfT, class Hash>
	class HashTable
	{
		typedef HashNode<T> Node;

		template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
		friend struct __HTIterator;

	public:
		typedef __HTIterator<K, T, T&, T*, KeyOfT, Hash> iterator;
		typedef __HTIterator<K, T, const T&, const T*, KeyOfT, Hash> const_iterator;

		iterator begin()
		{
			for (size_t i = 0; i < _tables.size(); i++)
			{
				if (_tables[i])
				{
					return iterator(_tables[i], this, i);
				}
			}

			return end();
		}

		iterator end()
		{
			return iterator(nullptr, this, -1);
		}

		const_iterator begin() const
		{
			for (size_t i = 0; i < _tables.size(); i++)
			{
				if (_tables[i])
				{
					return const_iterator(_tables[i], this, i);
				}
			}

			return end();
		}

		// this-> const HashTable<K, T, KeyOfT, Hash>*
		const_iterator end() const
		{
			return const_iterator(nullptr, this, -1);
		}

		HashTable()
		{
			_tables.resize(10);
		}

		~HashTable()
		{
			for (size_t i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}
				_tables[i] = nullptr;
			}
		}

		pair<iterator, bool> Insert(const T& data)
		{
			Hash hf;
			KeyOfT kot;

			iterator it = Find(kot(data));
			if (it != end())
				return make_pair(it, false);

			// 负载因子最大到1
			if (_n == _tables.size())
			{
				vector<Node*> newTables;
				newTables.resize(_tables.size() * 2, nullptr);
				// 遍历旧表
				for (size_t i = 0; i < _tables.size(); i++)
				{
					Node* cur = _tables[i];
					while(cur)
					{
						Node* next = cur->_next;

						// 挪动到映射的新表
						size_t hashi = hf(kot(cur->_data)) % newTables.size();
						cur->_next = newTables[i];
						newTables[i] = cur;

						cur = next;
					}

					_tables[i] = nullptr;
				}

				_tables.swap(newTables);
			}

			size_t hashi = hf(kot(data)) % _tables.size();
			Node* newnode = new Node(data);

			// 头插
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;

			return make_pair(iterator(newnode, this, hashi), true);
		}

		iterator Find(const K& key)
		{
			Hash hf;
			KeyOfT kot;

			size_t hashi = hf(key) % _tables.size();
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					return iterator(cur, this, hashi);
				}

				cur = cur->_next;
			}

			return end();
		}

		bool Erase(const K& key)
		{
			Hash hf;
			KeyOfT kot;

			size_t hashi = hf(key) % _tables.size();
			Node* prev = nullptr;
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}
					delete cur;

					return true;
				}

				prev = cur;
				cur = cur->_next;
			}

			return false;
		}

		void Some()
		{
			size_t bucketSize = 0;
			size_t maxBucketLen = 0;
			size_t sum = 0;
			double averageBucketLen = 0;

			for (size_t i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				if (cur)
				{
					++bucketSize;
				}

				size_t bucketLen = 0;
				while (cur)
				{
					++bucketLen;
					cur = cur->_next;
				}

				sum += bucketLen;

				if (bucketLen > maxBucketLen)
				{
					maxBucketLen = bucketLen;
				}
			}

			averageBucketLen = (double)sum / (double)bucketSize;

			printf("all bucketSize:%d\n", _tables.size());
			printf("bucketSize:%d\n", bucketSize);
			printf("maxBucketLen:%d\n", maxBucketLen);
			printf("averageBucketLen:%lf\n\n", averageBucketLen);
		}

	private:
		vector<Node*> _tables;
		size_t _n = 0;
	};
}
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

哈希桶——开放定址法 的相关文章

随机推荐