ADRC从入门到放弃0

2023-05-16

ADRC:自抗扰控制器。
其中,在对自抗扰理论的
研究中,引入了带宽概念这一个崭新的思路,极大的简化了自抗扰技术使用时参数整定
的问题,同时时域分析的方法可以发现利用带宽的概念还有利于解决系统误差;采用经
典控制论中的频率响应法来分析自抗扰技术的性能时,可以看出该方法有着非常优秀的
鲁棒性。尽管使用传统的分析工具分析自抗扰技术性能时,这些工作很简单粗糙,但是
自抗扰技术表现出的结果却非常吸引人。

  • 在自抗扰中就存在非线性函数 fal() 、 sat() ,使用这些非线性函数的意义在于可以人为的改变系
    统输入的变化特性,从而优化系统的响应过程。
  • 我们引入控制的最终目的不是对整个被控对象进行分析和优化其结构,我们希望控
    制的是被控对象响应的整个变化的过程,使其具有我们期望的特性。
    例如对系统:
    在这里插入图片描述
    选择控制量u ,使输出 ty)( 呈现出我们希望的状态,不需要完全弄清楚函数发f(x1,x2)是怎么样的,仅需要得到f(x1,x2)随着时间的变化量
    在这里插入图片描述
    就可以了。因此当 f(x1,x2)不知道的时候,从控制系统的最终目的来说,不需要去弄清楚 f(x1,x2)
    到底是是线性还是非线性,是时变的或时不变的,甚至可以不用在意它的存在,因为我们最终要控制的是整个系统的过程,系统内部的因素完全可以简化。
    在这里插入图片描述
    自抗扰控制器由跟踪微分器、扩张状态观测器、非线性反馈律这三部分组成。跟踪微分器(TD)的特点在于可以使用恰当的方式获得微分信号,在被控对象可以承受的控制力之上,为被控对象的响应安排过渡过程,使得系统在获得期望的快速性的同时又能保证没有超调量。非线性状态误差反馈(NLSEF),通过改变 PID 控制器对误差的加权方式,针对被控系统获得的误差、误差积分和微分,选用恰当的非线性组合方式,这样可以改善系统对误差的处理效率。扩张状态观测器(ESO) 把系统中的没有体现在数学模型上的部分以及无人直升机在飞行过程中所受到的外界干扰都视作一类对系统的总扰动,ESO对这个扰动进行估计并给予补偿,从而在不使用积分反馈的条件下也能实现无静差跟踪。选择 NLSEF 和 TD 并找到合适的参数,在两个部分的作用下自抗扰控制器就对无人直升机这一类不确定对象体现出极好的参数适应性和系统鲁棒性。
    sign函数
    在这里插入图片描述
    在设计控制系统的时候采用负反馈的结构可以在某种程度上降低系统所受的干扰对系统的不良作用,采取什么样的方法可以有效的完全抵消外界干扰的不良影响,我们在设计控制律时首先就要考虑这个方面[56]。降低甚至抵消干扰对系统的不良效果主要有两种思路,第一种是想办法先测量出干扰,然后再去抵消干扰的不良效果;第二种是想办法去弄清干扰形成的机理,再人为的去补偿这些干扰[57]。对于控制来说,归根结底是需要弄清这些干扰是不是需要去补偿,如果某些干扰对被控对象的输出没有影响,那么
    我们其实就没有必要去消除它;如果一些干扰影响到了被控对象的输出,那么我们可以认为这些干扰的不良效果一定会在被控对象的输出里体现,我们就可以通过某种方式去估计这些扰动并在这个基础之上去估计干扰的不良效果[58]。一旦我们能够想出合适的方法去估计干扰,那么就可以在控制过程中人为的去加以补偿。实际工程应用中常用前馈补偿的方式来消除扰动的作用,该方法实际上是一种测量扰动来进行补偿的办法。随着现代控制理论的发展,人们开始利用观测器这一方式去构造出我们需要的可以估计出干扰形式的合适工具。
    在这里插入图片描述
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

ADRC从入门到放弃0 的相关文章

  • Blazor 从入门到放弃

    Blazor 从入门到放弃 Intro Blazor 是微软在 NET 里推出的一个 WEB 客户端 UI 交互的框架 xff0c 使用 Blazor 你可以代替 JavaScript 来实现自己的页面交互逻辑 xff0c 可以很大程度上进
  • 这篇很好地引入介绍了ADRC

    这篇很好地引入介绍了ADRC https zhuanlan zhihu com p 151342543 from voters page 61 true 从零开始搭建无人机控制系统 xff08 一 xff09 反馈与闭环 遥远的乌托邦 欢迎
  • ADRC自抗扰控制自学笔记(包含simulink仿真)(转载)

    他这里让我很好理解了跟踪微分器 非线性PID 准确说是非线性PD xff0c 所以可以看到输入是两根线而不是三根线 xff09 也就是说传统PID是线性的 xff1f 但是不是那些系统是非线性的 xff0c 比如无人机 xff0c 平衡车
  • 关于ADRC的一些粗鄙之语

    看这篇我感受到我控制理论方面的基础还掌握得不够 摘自 xff1a https zhuanlan zhihu com p 156228260 关于ADRC的一些粗鄙之语 隔壁uncle wang 机械工程Ph D amp 控制算法小萌新 ac
  • 自抗扰控制理论(一)ADRC的原理

    摘自 xff1a https zhuanlan zhihu com p 115283894 自抗扰控制理论 xff08 一 xff09 ADRC的原理 Chenglin Li 厦门大学 飞行器设计硕士在读 0 相关参考链接 Chenglin
  • (ADRC)自抗扰控制器学习总结(一)

    蓝色字体是我的评注 摘自 xff1a https blog csdn net qq 27270029 article details 78937854 ADRC自抗扰控制基本思想要点 xff1a 1 标准型与总扰动 xff0c 扩张状态与扰
  • 这看到一个内环ADRC 外环PID的。

    这看到一个内环ADRC 外环PID的 https oversea cnki net Kcms detail detail aspx filename 61 1018818866 nh amp dbcode 61 CMFD amp dbnam
  • ADRC算法Auto Disturbances Rejection control

    自抗扰控制 其中 xff0c e 61 v t y t 是控制系统参考输入量v t 与被控对象输出量y t 之间的差值 xff0c kp比例系数 ki积分系数 xff0c xff0c kd微分系数 优点 xff1a 1 仅由误差来决定控制
  • 自抗扰(ADRC)控制原理及控制器设计

    自抗扰控制是在PID控制算法基础上进行改进的新型控制方法 xff0c 它具有不依赖于控制对象模型 不区分系统内外扰的结构特点 常用的自抗扰控制器主要由跟踪微分器 xff08 Tracking Differentiator xff0c TD
  • 自抗扰控制ADRC之扩张观测器

    目录 前言 1 被控对象 被观测对象 2 非线性观测器 2 1仿真分析 2 2仿真模型 2 3仿真结果 3 线性观测器 3 1仿真模型 3 2仿真结果 4 总结和学习问题 前言 什么叫观测器 xff1f 为什么该类观测称为扩张观测器 xff
  • 【ADRC】根据ADRC的思想改进PID

    根据前面两篇关于ADRC的文章以及PID原理的文章 xff0c 我们可以利用ADRC的思想来对PID算法做一些改进来看看效果 xff0c 可以将改进的PID称之为非线性PID 主要可以利用跟踪微分器 xff0c 针对PID的两个缺陷来进行改
  • 20210824-ADRC数学和解释

    ADRC个人感觉就是 xff0c 对目标信号进行最速跟踪 43 不确定量观测补偿 43 低通滤波信号微分 43 pid 举例说明 xff1a 输入 xff1a Sr 目标电机速度 xff0c 输出 xff1a u 电机pwm 被控量 xff
  • 2020-12-29 Matlab自动化控制-Adrc自抗扰控制参数调节

    Matlab自动化控制 Adrc自抗扰控制参数调节 上篇参看 xff1a https blog csdn net qingfengxd1 article details 111830762 以最简单的线性组合方法 xff08 1 xff09
  • 自抗扰控制(ADRC)

    1 ADRC控制原理和结构 xff08 1 xff09 最速跟踪微分器 TD xff08 2 xff09 扩张状态观测器 ESO xff08 3 xff09 非线性状态误差反馈 NLSEF 2 ADRC控制仿真 xff08 1 xff09
  • (ADRC)自抗扰控制器学习总结(一)

    ADRC自抗扰控制基本思想要点 xff1a 1 标准型与总扰动 xff0c 扩张状态与扰动整体辨识 xff0c 微分信号生成与安排过渡过程以及扰动的消减与控制量产生 ADRC主要构成 xff1a 1 gt 跟踪微分器 xff08 TD xf
  • 基于simulink的svm-dtc-adrc控制建模与仿真

    目录 一 理论基础 二 核心程序 三 仿真结论 一 理论基础 永磁电机由于没有励磁绕组和励磁装置 xff0c 不消耗励磁功率 xff0c 对磁极设在转子的电机 如一般同步电机 还可省去滑环和电刷 随着永磁材料和控制技术的发展 xff0c 永
  • 自抗扰控制(ADRC)仿真系统(matlab/simulink)的搭建

    一 现在关于自抗扰控制技术方面的研究已经比较成熟了 xff0c 基本上熟悉结构以后都可以找到例子实现 xff0c 今天以一个简单的例子来介绍自抗扰控制的仿真系统搭建 xff0c 不必畏惧 xff0c 熟悉皆可达 1 首先自抗扰控制分为TD
  • ADRC(自抗扰控制器)技术附Matlab代码框架

    自抗扰控制器 Auto Active Disturbances Rejec ion Controller ADRC 是韩京清学者提出的 xff0c 是一种继PID控制器后的一种新型的实用的控制技术 它不是一种独立的技术 xff0c 可以理解
  • 2021-02-05

    一个 C 转 GO 的程序员的自白 GO 一个文件下载过滤需求 var file been found lock sync Mutex var file been found map string int make map string i
  • 行人重识别(Person Re-Identification) ——Market-1501 数据集介绍、命名说明及pytorch数据类型转化

    开头瞎叭叭 每日一个小知识 pycharm快速注释操作 ctrl Market 1501数据集简介 1 该数据集在清华大学校园中采集 于夏天拍摄 在 2015 年构建并公开 2 包括由6个摄像头 其中5个高清摄像头和1个低清摄像头 拍摄到的

随机推荐

  • 信息论笔记(需要编辑格式)

    主要来源 xff1a 吴军 信息论40讲 信息论介绍 世界上任何一个探索者都需要清楚三件事 我们现在的位置 我们的目标 以及通向目标的道路 哲学是一门生活的艺术 它帮助我们认清自己 它回答了第一个问题 至于每一个人的目标 我相信大家比我更清
  • 阿里云短信服务使用

    说明 这是用go语言实现的 xff0c 但说实话 xff0c 其实没啥影响 xff0c 不管什么语言都是这个套路 xff0c 所以无论你是学什么语言或者是用什么语言的都好 xff0c 看看总不亏 22年7 14下午14 xff1a 38 x
  • 数据分析思维扫盲

    知识来源 xff1a 接地气学堂1 前言 行文之初衷 xff0c 建立知识树 xff0c 因而不易速读 xff0c 请君悉知 宜为工具书 xff0c 按索引取之 独学而无友 xff0c 必孤陋寡闻 xff0c 请君赐教 xff0c 不吝感激
  • 高阶用户运营体系搭建

    这里写目录标题 第1章 理解用户运营本质1 什么是 用户运营 xff1f 2 一个 用户运营 重点关注什么 xff1f 3 怎么做好用户运营 xff1f 4 高阶用户运营体系搭建5 大规模用户运营体系的3大子系统6 用户留存的归因 活跃差模
  • 商品管理-运营指挥室 看板

    商品管理可视化项目 项目目标 梳理商品管理的整体业务流程 xff0c 调研数据的使用情况 xff0c 建立影响业务的 xff1a 销量 留存 sku数 断码等维度指标 xff0c 建立智能数据监控体系 工作范围 销量看板留存看板在售SKC看
  • Excel 的进阶学习

    文章目录 Excel 的进阶学习1 常用的 Excel 函数及用途1 关联匹配类2 清洗处理类3 逻辑运算类4 计算统计类5 时间序列类 2 基础1 快捷键2 数据组错误信息基本认识计算操作符 3 数据图展示 3 实战分析注意 Excel
  • SQL

    数据库 基本概念 1 xff0e 数据 定义 xff1a 描述事物的符号序列 xff0c 数据 xff08 Data xff09 是数据库中存储的基本对象 数据的种类 xff1a 数字 文字 图形 图像声音及其他特殊符号 数据举例 xff1
  • MatLab-simulink组件(模块)中文名大全

    MATLAB 矩阵实验室 7 0 1 Simulink 仿真 6 1 Aerospace Blockset 太空模块 1 6 1 Bioinformatics Toolbox 生物信息工具箱 1 1 1 CDMA Reference Blo
  • 控制理论总结

    经典控制理论 xff1b 现代控制理论线性控制理论 xff1b 非线性控制理论最优控制 xff1b 预测控制 xff1b 鲁棒控制数字控制系统 xff1b 连续控制系统随动系统 xff1b 自动控制系统的分类 一 按给定信号的形式不同 xf
  • H无穷控制

    H无穷优化控制问题可归纳为 xff1a 求出一个使系统内部稳定的控制器K s xff0c 使闭环传函Tzw的无穷范数极小 LQG的弱点 xff1a 对控制的一个主要挑战使多变量控制系统设计 xff0c 因为MIMO系统的传函是一个矩阵 LQ
  • 增益调度控制

    增益调度方法在良性 Well Behaved 非线性系统中应用的比较普遍 xff0c 所谓良性非线性系统是指系统的行为特性能由一系列选定的局部线性化模型充分描述 增益调度控制方法的一个显著优点就是它能够充分利用现有的成熟的线性控制理论为非线
  • UORB讲解

    Pixhawk 飞控系统是基于ARM的四轴以上飞行器的飞行控制器 xff0c 它的前身是PX4 IMU xff0c Pixhawk 把之前的IMU进行了完整的重构 xff0c 最新版本是2 4 3 而对应的Pixhawk 1 x版本与2 x
  • gorm的Raw与scan

    gorm的Raw与scan Raw 中文 xff1a 原生的 作用 xff1a 在写gorm语句时候用来写Raw sql语句 xff08 原生sql语句 xff09 gorm官方介绍Scan https gorm io zh CN docs
  • MavLink

    2 1 MAVLink xff08 Micro Air Vehicle Link xff09 是一种用于小型无人载具的通信协议 xff0c 于2009年首次发布 该协议广泛应用于地面站 xff08 Ground Control Statio
  • 飞控接收到的每一条MAVLink消息包都会上传到uORB消息池中吗?

    1 飞控接收到的每一条MAVLink消息包都会上传到uORB消息池中吗 xff1f 2 如何自定义 xff08 选择 配置 xff09 发送给QGC的MAVLink消息 xff1f
  • 滤波、传感器融合、IMU合GPS可以测量哪些物理量

    目录 结论IMU加速度计陀螺仪GPS 原理加速度计陀螺仪GPS 传感器融合滤波算法线性互补滤波卡尔曼滤波KF扩展卡尔曼滤波EKF 小结 结论 IMU paxhawk pixhack自带的IMU xff08 惯性测量模块 xff09 包含以下
  • 学习过程中提出的疑问

    目录 如何在simulink中编译两个应用并烧录到飞控中 xff1f 如何自定义地面站QGC接收到的MAVLink消息 xff1f xff08 MAVLink inspector xff09 航点 航路生成器 xff1f 如何在simuli
  • PX4学习笔记

    目录 网址PX4 io网页指导Pixhawk PX4 APM ArduPilot关系硬件照片 示意图逻辑图 集多旋翼控制框架软件框架 辅助工具 软件 使用方法source insight新建工程 导入PX4源码source insight
  • H无穷控制理论与应用案例分析

    0 知识背景 概念 定义 内稳定 xff1a BIBO稳定 xff1a 镇定 xff1a 对于一个控制系统来说 xff0c 如果通过某种反馈可以使系统实现渐近稳定 xff0c 即闭环系统极点具有负实部 xff0c 则称该系统是能镇定的 信号
  • ADRC从入门到放弃0

    ADRC xff1a 自抗扰控制器 其中 xff0c 在对自抗扰理论的 研究中 xff0c 引入了带宽概念这一个崭新的思路 xff0c 极大的简化了自抗扰技术使用时参数整定 的问题 xff0c 同时时域分析的方法可以发现利用带宽的概念还有利