二次再散列法

2023-05-16

散列表

设所有可能出现的关键字集合记为U(简称全集)。实际发生(即实际存储)的关键字集合记为K(|K|比|U|小得多)。

散列方法是使用函数h将U映射到表T[0..m-1]的下标上(m=O(|U|))。这样以U中关键字为自变量,以h为函数的运算结果就是相应结点的存储地址。从而达到在O(1)时间内就可完成查找。

其中:

① h:U→{0,1,2,…,m-1} ,通常称h为散列函数(Hash Function)。散列函数h的作用是压缩待处理的下标范围,使待处理的|U|个值减少到m个值,从而降低空间开销。

② T为散列表(Hash Table)。

③ h(Ki)(Ki∈U)是关键字为Ki结点存储地址(亦称散列值或散列地址)。

④ 将结点按其关键字的散列地址存储到散列表中的过程称为散列(Hashing)

冲突

两个不同的关键字,由于散列函数值相同,因而被映射到同一表位置上。该现象称为冲突(Collision)或碰撞。发生冲突的两个关键字称为该散列函数的同义词(Synonym)。

安全避免冲突的条件

最理想的解决冲突的方法是安全避免冲突。要做到这一点必须满足两个条件:

①其一是|U|≤m

②其二是选择合适的散列函数。

这只适用于|U|较小,且关键字均事先已知的情况,此时经过精心设计散列函数h有可能完全避免冲突。

冲突不可能完全避免

通常情况下,h是一个压缩映像。虽然|K|≤m,但|U|>m,故无论怎样设计h,也不可能完全避免冲突。因此,只能在设计h时尽可能使冲突最少。同时还需要确定解决冲突的方法,使发生冲突的同义词能够存储到表中。

影响冲突的因素

冲突的频繁程度除了与h相关外,还与表的填满程度相关。

设m和n分别表示表长和表中填人的结点数,则将α=n/m定义为散列表的装填因子(Load Factor)。α越大,表越满,冲突的机会也越大。通常取α≤1。对于大多数应用程序来说,装填因子为0.75是比较合理的。

标准

散列函数的选择有两条标准:简单和均匀。

简单指散列函数的计算简单快速;

均匀指对于关键字集合中的任一关键字,散列函数能以等概率将其映射到表空间的任何一个位置上。也就是说,散列函数能将子集K随机均匀地分布在表的地址集{0,1,…,m-1}上,以使冲突最小化。

常用散列函数

平方取中法

具体方法:先通过求关键字的平方值扩大相近数的差别,然后根据表长度取中间的几位数作为散列函数值。又因为一个乘积的中间几位数和乘数的每一位都相关,所以由此产生的散列地址较为均匀。

例:将一组关键字(0100,0110,1010,1001,0111)平方后得

(0010000,0012100,1020100,1002001,0012321)

若取表长为1000,则可取中间的三位数作为散列地址集:

(100,121,201,020,123)。

相应的散列函数用C实现很简单:

int Hash(int key){ //假设key是4位整数

key*=key; key/=100; //先求平方值,后去掉末尾的两位数

return key%1000; //取中间三位数作为散列地址返回

除余法

该方法是最为简单常用的一种方法。它是以表长m来除关键字,取其余数作为散列地址,即 h(key)=key%m

该方法的关键是选取m。选取的m应使得散列函数值尽可能与关键字的各位相关。m最好为素数。

若选m是关键字的基数的幂次,则就等于是选择关键字的最后若干位数字作为地址,而与高位无关。于是高位不同而低位相同的关键字均互为同义词。

若关键字是十进制整数,其基为10,则当m=100时,159,259,359,…,等均互为同义词。

相乘取整法

该方法包括两个步骤:首先用关键字key乘上某个常数A(0<A<1),并抽取出key.A的小数部分;然后用m乘以该小数后取整。即:

该方法最大的优点是选取m不再像除余法那样关键。比如,完全可选择它是2的整数次幂。虽然该方法对任何A的值都适用,但对某些值效果会更好。Knuth建议选取

该函数的C代码为:

int Hash(int key){

double d=key *A; //不妨设A和m已有定义

return (int)(m*(d-(int)d));//(int)表示强制转换后面的表达式为整数

}

随机数法

选择一个随机函数,取关键字的随机函数值为它的散列地址,即

h(key)=random(key)

其中random为伪随机函数,但要保证函数值是在0到m-1之间。

二次再散列法

编辑 播报

开放地址法

开放地址法解决冲突的方法

用开放地址法解决冲突的做法是:当冲突发生时,使用某种探查(亦称探测)技术在散列表中形成一个探查(测)序列。沿此序列逐个单元地查找,直到找到给定的关键字,或者碰到一个开放的地址(即该地址单元为空)为止(若要插入,在探查到开放的地址,则可将待插入的新结点存人该地址单元)。查找时探查到开放的地址则表明表中无待查的关键字,即查找失败。

开放地址法的一般形式

开放地址法的一般形式为: hi=(h(key)+di)%m 1≤i≤m-1

其中:

①h(key)为散列函数,di为增量序列,m为表长。

②h(key)是初始的探查位置,后续的探查位置依次是hl,h2,…,hm-1,即h(key),hl,h2,…,hm-1形成了一个探查序列。

③若令开放地址一般形式的i从0开始,并令d0=0,则h0=h(key),则有:

hi=(h(key)+di)%m 0≤i≤m-1

探查序列可简记为hi(0≤i≤m-1)。

开放地址法堆装填因子的要求

开放地址法要求散列表的装填因子α≤l,实用中取α为0.5到0.9之间的某个值为宜。

形成探测序列的方法

按照形成探查序列的方法不同,可将开放地址法区分为线性探查法、二次探查法、双重散列法等。

线性探查法(Linear Probing)

该方法的基本思想是:

将散列表T[0..m-1]看成是一个循环向量,若初始探查的地址为d(即h(key)=d),则最长的探查序列为:

d,d+l,d+2,…,m-1,0,1,…,d-1

即:探查时从地址d开始,首先探查T[d],然后依次探查T[d+1],…,直到T[m-1],此后又循环到T[0],T[1],…,直到探查到T[d-1]为止。

探查过程终止于三种情况:

(1)若当前探查的单元为空,则表示查找失败(若是插入则将key写入其中);

(2)若当前探查的单元中含有key,则查找成功,但对于插入意味着失败;

(3)若探查到T[d-1]时仍未发现空单元也未找到key,则无论是查找还是插入均意味着失败(此时表满)。

利用开放地址法的一般形式,线性探查法的探查序列为:

hi=(h(key)+i)%m 0≤i≤m-1 //即di=i

二次探查法(Quadratic Probing)

二次探查法的探查序列是:

hi=(h(key)+i*i)%m 0≤i≤m-1 //即di=i2

即探查序列为d=h(key),d+12,d+22,…,等。

该方法的缺陷是不易探查到整个散列空间。

双重散列法(Double Hashing)

该方法是开放地址法中最好的方法之一,它的探查序列是:

hi=(h(key)+i*h1(key))%m 0≤i≤m-1 //即di=i*h1(key)

即探查序列为:

d=h(key),(d+h1(key))%m,(d+2h1(key))%m,…,等。

该方法使用了两个散列函数h(key)和h1(key),故也称为双散列函数探查法。

拉链法

拉链法解决冲突的方法

拉链法解决冲突的做法是:将所有关键字为同义词的结点链接在同一个单链表中。若选定的散列表长度为m,则可将散列表定义为一个由m个头指针组成的指针数组T[0..m-1]。凡是散列地址为i的结点,均插入到以T[i]为头指针的单链表中。T中各分量的初值均应为空指针。在拉链法中,装填因子α可以大于1,但一般均取α≤1。

拉链法的优点

拉链法有如下几个优点:

(1) [2]  拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;

(2)由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;

(3)开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;

(4)在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。而对开放地址法构造的散列表,删除结点不能简单地将被删结点的空间置为空,否则将截断在它之后填人散列表的同义词结点的查找路径。这是因为各种开放地址法中,空地址单元(即开放地址)都是查找失败的条件。因此在用开放地址法处理冲突的散列表上执行删除操作,只能在被删结点上做删除标记,而不能真正删除结点。

拉链法的缺点

拉链法的缺点是:指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。

多哈希法

设计二种甚至多种哈希函数,可以避免冲突,但是冲突几率还是有的,函数设计的越好或越多都可以将几率降到最低(除非人品太差,否则几乎不可能冲突)。

建域法

假设哈希函数的值域为[0,m-1],则设向量HashTable[0..m-1]为基本表,另外设立存储空间向量OverTable[0..v]用以存储发生冲突的记录。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

二次再散列法 的相关文章

  • 基于线性矩阵不等式LMI的鲁棒H无穷控制算法设计,多性能指标的H无穷控制算法推导,多面体模型

    catalogue 关键字一些符号和特殊表示预备知识正文 xff08 一 xff09 不确定系统的数学表示 xff08 二 xff09 线性时不变定常系统的LMI稳定性定理 xff08 判据 xff09 2 1 系统模型2 2 当u 61
  • python与其他语言的不同之处--语法拾遗

    八戒你说呢 基本语法空行的使用行与缩进import 与 from import命令行参数变量的使用列表Tuple xff08 元组 xff09 Set xff08 集合 xff09 Dictionary xff08 字典 xff09 Pyt
  • 深度学习入门篇1

    1 目前流行的深度学习框架简介 深度学习框架 xff08 点击跳转 xff09 2 神经网络工具箱torch autograd与torch nn torch autograd库虽然实现了自动求导与梯度反向传播 xff0c 但如果我们要完成一
  • 3D点云的基本操作(基于PCL编程)

    知识储备 右手系 右手 xff0c 拇指 xff0c 食指 xff0c 中指 xff0c 分别是x y z的正方向 左手系则同理 旋转矩阵 本质 xff1a 两个坐标系之间的旋转关系 用途 xff1a 旋转点云 原理 xff1a 设传感器的
  • uCOS-III 应用开发指南—基于 STM32F103系列

    uCOS III 应用开发指南 基于 STM32F103系列 嵌入式经典教材 实例截图 文件 xff1a 590m com f 25127180 490253580 defdec xff08 访问密码 xff1a 551685 xff09
  • 无人机飞行控制源码(android)

    旨在为大学生 航模爱好者 创客提供可二次开发的迷你四轴飞行器原型 是一个完全开源的项目 xff0c 包括源代码 xff0c 原理图 xff0c 设计思路等 可以通过它学习四轴飞行器相关知识 xff0c 也可以在上面进行二次开发 xff0c
  • 通过git下载github分支(最详细)

    文章目录 一 git下载指定分支代码到本地A 前提 xff1a B 具体步骤 xff1a 二 git下载github所有分支代码到本地具体步骤 xff1a 一 git下载指定分支代码到本地 任务一 xff1a 下载地址为https gith
  • CSS基线对齐的理解以及处理

    相信大家都会遇到同行不同盒子中文本的内容不能对齐的情况 xff0c 而不知道这是为何 xff1f 其实这是因为基线对齐的原因 什么是基线对齐 xff1f 先让我们来看一张图片 xff1a 到这里我们的疑惑是不是少了一些 xff1f 基线对齐
  • Eigen求解大型稀疏对称矩阵(Cholesky分解)

    参考自Eigen文档 代码如下 xff1a span class token macro property span class token directive hash span span class token directive ke
  • CMake的基本使用方法与install命令

    源代码 main cpp文件如下 span class token macro property span class token directive hash span span class token directive keyword
  • docker常用命令总结

    docker常用命令总结 span class token function uname span span class token parameter variable r span span class token comment 查看
  • 基于STC15的飞控设计(1)飞控电路设计

    前言 学校举办的无人机比赛 xff0c 要求使用stc15系列芯片设计飞控 xff0c 然后完成一台四轴的无人机进行穿越障碍的比赛 xff0c 第一次设计飞控 xff0c 如果有什么设计得不好的希望大家多多指教 这个博客算是制作流程的记录
  • STM32F407霸天虎FreeRTOS学习笔记——移植FreeRTOS到开发板上

    STM32F407霸天虎FreeRTOS学习笔记 移植FreeRTOS到开发板上 FreeRTOS源码获取移植第一步 xff1a 创建文件夹Keilmain c 实验效果 FreeRTOS源码获取 在移植之前 xff0c 首先要获取到 Fr
  • 倒立摆及其应用//2021-2-23

    前言 xff1a 以前搞电赛的时候搞过Pid平衡小车 xff0c 倒立摆基本实现方法与平衡小车差不多 xff0c 有一次刚院跑到实验室唠嗑 xff0c 问你知不知道倒立摆的应用 xff1f 我说不知道 xff0c 他说航天火箭 xff0c
  • TypeError: Cannot convert a symbolic Keras input/output to a numpy array.

    问题类型 TypeError Cannot convert a symbolic Keras input output to a numpy array This error may indicate that you re trying
  • 自己的学习记录

    从今天开始学习如何使用Java来写数据库课程设计的作业 xff01 xff01 xff01
  • Tsai分享:资源分享(1)——视觉SLAM十四讲及视频

    Tsai分享 xff1a 资源分享 xff08 1 xff09 视觉SLAM十四讲及视频 一 视觉SLAM十四讲 如若转载请附上链接 xff1a https blog csdn net weixin 43338642 article det
  • pycharm如何查看python文件的工作目录

    在找bug的过程中发现python文件的工作目录和存放目录地址有可能是不一样的 xff0c pathlib路径操作中的pathlib Path cwd 获取的是工作目录而不是存放目录地址发现工作目录和存放目录地址不同的时候一定要修改过来 x
  • C++中vector的用法详解

    文章目录 构造函数增加函数删除函数遍历函数判断函数大小函数交换函数赋值函数改变空间 构造函数 span class token comment vector 创建一个空vector span vector span class token

随机推荐

  • 华为技术面

    文章目录 手撕代码流程题目描述方法介绍面试官评价思维扩展 项目描述技术问题内存说明下C 43 43 的内存分配情况 xff0c 栈和队列的区别以及程序员如何分配回收内存 xff1f C 43 43 程序员和Java程序员有一个很大的区别 x
  • 华东师范大学计算机学硕2023考研经验贴

    文章目录 1 个人经历1 1 一战1 2 二战1 3 心态 2 初试2 1 政治2 2 英语2 3 数学2 4 408 3 复试3 1 机试A 数字猜想B 特殊质数C 最小字符串D 数字排序E 整数分解 3 2 英语面试3 3 综合面试 1
  • Go后端部署服务器

    go后端部署服务器方式一 xff1a xff08 最简单 xff09 和暑假做重点场所项目部署一样 xff0c 简单 xff0c 无脑 xff0c 手动 xff0c 麻烦 span class token number 1 span spa
  • 数据分析实用python程序

    文章目录 1 pdf转txt2 判断txt文件是否为空3 获取txt文件每一行4 获取文件夹所有文件名5 读写xlsx表格6 遍历txt每个字符7 字符串中字符替换 1 pdf转txt span class token comment de
  • 51单片机之数码管

    1 静态数码管原理图 LED数码管根据LED的不同接法分为两类 xff1a 共阴和共阳 为了显示数字或字符 xff0c 必须对数字或字符进行编码 七段数码管加上一个小数点 xff0c 共计8段 因此为LED显示器提供的编码正好是一个字节 共
  • 银行排队模拟(队列)

    银行排队模拟程序 队列类Queue ifndef span class token constant QUEUE H span define span class token constant QUEUE H span struct Rec
  • C/C++中struct和class的区别

    目录 struct class struct和class的区别 struct struct是描述一个数据结构的集合 xff0c 像一周有七天 xff0c 你可以把一周看成是一个结构体 xff0c 然后在结构体里面定义一个数组来存放这个七天
  • java枚举(enum)使用详解

    文章目录 前言一 枚举类型定义二 访问成员三 遍历四 在switch xff08 xff09 中使用枚举五 方法1 内置方法1 1 ordinal 用于返回成员的索引1 2 compareTo 用于比较枚举类型中两个成员的索引值1 3 va
  • 分析url从输入到展过程中的页面优化、performance

    浏览器会开启一个线程处理URL请求 url从输入到展示页面的过程 1 输入网址 2 DNS解析 3 建立tcp连接 xff08 请求队列queuing 请求等待stalled 4 客户端发送HTPP请求 5 服务器处理请求 6 服务器响应请
  • 双重锁单例模式

    不忘初心 xff0c 思考梦开始的地方 普通的懒汉式和饿汉式都不用管 简单实现一下线程安全的方式 span class token keyword public span span class token keyword class spa
  • VScode神仙插件,程序员必备

    前言 Visual Studio Code VS Code 是微软2015年推出的一个轻量但功能强大的源代码编辑器 xff0c 基于 Electron 开发 xff0c 支持 Windows Linux 和 macOS 操作系统 它内置了对
  • 【Java】使用Java实现爬虫

    文章目录 使用Java实现爬虫一 HttpClient实现模拟HTTP访问1 1 HttpClient1 2 引入依赖1 3 创建简单的请求操作1 3 1 创建实例1 3 2 Jsoup应用 1 4 爬取过程中可能出现的问题1 4 1 JS
  • STM32 HAL库+ESP8266+华为云物联网平台

    文章内容 xff1a STM32 HAL库通过串口发送AT指令完成与ESP8266的控制实现接入华为云物联网平台 xff0c 并完成基本通信与控制 xff0c 包括设备属性上报和命令下发解析与响应 文末获取 STM32 HAL库 43 ES
  • MySQL事务篇

    文章目录 说明 xff1a 事务篇一 事务隔离级别是怎么实现的 xff1f 二 MySQL 可重复读隔离级别 xff0c 完全解决幻读了吗 xff1f 说明 xff1a 此类文章是为小林coding的图解MySQL xff0c 所简写 xf
  • Android studio TCP网络调试助手应用开发(支持TCP Server与Client切换)

    在前几篇的文章中带大家完成了基于TCP的物联网安卓应用开发 xff0c 教程内容是创建了一个TCP客户端并连接服务器完成数据通信的过程 xff0c 后不久又发布了一个ESP8266创建TCP 服务器与安卓的客户端进行通信的一个文章 xff0
  • 【FreeRTOS】中断管理

    在介绍本文之前 xff0c 向大家推荐个非常容易入门的人工智能学习网站 xff0c 建议点击收藏 目录 xff1a 1 前言2 内核提供两套API2 1 优点2 2 缺点2 3 常用API函数列表2 4 pxHigherPriorityTa
  • 【嵌入式基础】内存(Cache,RAM,ROM,Flash)

    1 前言 最近在看赛普拉斯的一款芯片CYW8019规格书 xff0c 里面有好几个内存的关键字 xff08 如下图的右上方 xff09 xff0c 本文将聊它们的含义和作用 2 Cache Cache是集成在CPU内部的极高速缓存 一般来讲
  • 使用Promise解决多个请求数据并发问题

    首先引用一下阮一峰大佬的一段话 xff1a Promise xff0c 简单说就是一个容器 xff0c 里面保存着某个未来才会结束的事件 xff08 通常是一个异步操作 xff09 的结果 从语法上说 xff0c Promise是一个对象
  • 1. KVM虚拟化学习

    1 什么是虚拟化 虚拟化 xff0c 通过模拟计算机的硬件 xff0c 来实现同一台计算机上运行多个不同的操作系统的既技术 2 为什么要使用虚拟化 为了充分利于资源 xff0c 软件运行环境的隔离 xff0c 只要有虚拟化才能实现 虚拟化提
  • 二次再散列法

    散列表 设所有可能出现的关键字集合记为U 简称全集 实际发生 即实际存储 的关键字集合记为K xff08 K 比 U 小得多 xff09 散列方法是使用函数h将U映射到表T 0 m 1 的下标上 xff08 m 61 O U xff09 这