数据结构与算法(一)复杂度分析(下):不同情况下的复杂度变化

2023-05-16

最好、最坏情况时间复杂度

// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,程序直接break,这个时候对应的时间复杂度就是最好情况时间复杂度。
最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

平均情况时间复杂度

要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。
那平均时间复杂度的计算过程就变成了这样:

1*1/(2n) + 2*1/(2n) + 3*1/(2n) +···+ n*1/(2n) + n*1/2 = (3n+1)/4

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度
引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

均摊时间复杂度

均摊时间复杂度,听起来跟平均时间复杂度有点儿像。对于初学者来说,这两个概念确实非常容易弄混。
平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。

 // array表示一个长度为n的数组
 // 代码中的array.length就等于n
 int[] array = new int[n];
 int count = 0;
 
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }

    array[count] = val;
    ++count;
 }

这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。
每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路。你都理解了吗?
今天我们学习了几个复杂度分析相关的概念,分别有:最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度、均摊时间复杂度。之所以引入这几个复杂度概念,是因为,同一段代码,在不同输入的情况下,复杂度量级有可能是不一样的。
思考题
来分析一下下面这个 add() 函数的时间复杂度。

// 全局变量,大小为10的数组array,长度len,下标i。
int array[] = new int[10]; 
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
   if (i >= len) { // 数组空间不够了
     // 重新申请一个2倍大小的数组空间
     int new_array[] = new int[len*2];
     // 把原来array数组中的数据依次copy到new_array
     for (int j = 0; j < len; ++j) {
       new_array[j] = array[j];
     }
     // new_array复制给array,array现在大小就是2倍len了
     array = new_array;
     len = 2 * len;
   }
   // 将element放到下标为i的位置,下标i加一
   array[i] = element;
   ++i;
}
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

数据结构与算法(一)复杂度分析(下):不同情况下的复杂度变化 的相关文章

  • 2021-02-07 SONiC SAI结构2 1D Bridge

    SONiC SAI结构2 1D Bridge 以太网交换流水线结构 SONiC SAI对交换机 路由器的报文处理流程建立了标准化的行为模型 即使不同的交换芯片内部实现报文处理的方式各不相同 xff0c 由于行为模型是报文处理过程的抽象描述
  • 2021-02-21 SONiC SAI结构5 VXLAN

    SONiC SAI结构5 VXLAN VXLAN报文处理模型流水线结构 SONiC SAI支持VXLAN协议 xff0c 具备支持VTEP的能力 根据报文处理功能模型的特点 xff0c 不同的功能块可以好像搭积木一样组合在一起形成新的功能
  • 2021-02-27 SONiC系统管理 21系统运行平台管理

    2021 02 27 SONiC系统管理 21 系统运行平台管理 SONiC系统通过SAI统一了交换芯片的管理 xff0c 为不同厂家的芯片提供了统一的编程接口 虽然交换芯片提供了系统的最关键的报文处理功能 xff0c 但是作为一个需要在实
  • 2021-03-03 SONiC系统管理 23 SONiC与ONIE

    SONiC系统管理 23 SONiC与ONIE 在开发解耦的白盒交换机设备中 xff0c 在硬件开源的基础上 xff0c 控制软件除SONiC以外也有其它NOS的选择 xff0c 如Cumulus Linux Open Network Li
  • 2021-03-20 SONiC 系统管理 28 静态路由配置

    2021 03 20 SONiC 系统管理 28 静态路由配置 SONiC系统支持通过多种方式配置静态路由 xff0c 包括CLI接口 xff0c 基于RESTCONF YANG方式或者gNMI接口的方式 SONiC静态路由支持IPv4和I
  • 2021-04-26 SONiC: 转发和管理平面接口SAI模型

    2021 04 26 SONiC 转发和管理平面接口SAI模型 SAI模型中转发平面和管理平面接口 转发平面和管理平面之间的接口是控制报文从转发平面传递到控制平面CPU处理的接口 对于各种类型的交换机而言 xff0c 大量不同种类的控制报文
  • 阅读qt贪吃蛇代码、学习

    学qt只有两天而已 xff0c 感觉qt真的很好入门 比mfc容易的很多 学习qt短短时间 xff0c 感觉自己可以仿照别人的代码来写些自己的桌面东西了 不过 xff0c 没有驱动 xff0c 只是兴趣的学习下 可能到此为止了 主要收获 x
  • 2021-05-18 SONiC 系统Loopback地址和管理地址配置

    SONiC 系统管理 37 系统Loopback地址和管理地址配置 SONiC系统可以通过CLI和Config DB来配置Loopback地址 CLI的配置命令和Linux系统配置网口的命令相同 admin 64 switch span c
  • 2021-05-22 SONiC 系统配置命令

    2021 05 20 SONiC 系统管理 39 SONiC系统配置命令 config help This command lists all the possible configuration commands at the top l
  • 2021-05-27 SONiC 系统配置显示命令

    2021 05 27 SONiC 系统管理 40 SONiC系统配置显示命令 show help This command displays the full list of show commands available in the s
  • 2021-06-07 SONiC 系统基于优先级的流控PFC配置命令

    2021 06 07 SONiC 系统管理 42 SONiC 系统基于优先级的流控PFC配置命令 IEEE 802 1Qbb定义的基于优先级的流控Asymmetric Priority Flow Control功能可以在端口上为每个不同的优
  • 2021-06-25 SONiC 系统BGP配置命令

    2021 06 25 SONiC 系统BGP配置命令 SONiC系统BGP配置 SONiC系统所默认包含的BGP模块在201811版的SONiC之前是开源的Quagga软件 xff0c 之后改成了更流行的FRR FRR中的Show命令是以
  • 2021年8月14日 七夕节的相遇 SONiC+P4实现

    2021年8月14日 七夕节的相遇 SONiC 43 P4实现 ONF启动了PINS项目 xff0c P4 integrated network stack
  • 2021-08-20 SONiC中的FRR和Zebra

    2021 08 20 SONiC中的FRR和Zebra SONiC中采用FRR和Zebra处理路由协议 以前写过SONiC系统所默认包含的BGP模块在201811版的SONiC之前是开源的Quagga软件 xff0c 之后改成了更流行的FR
  • 2021-08-29 SONiC中基于策略的哈希配置

    SONiC中基于策略的哈希配置 SONiC可以支持对不同类型的报文采取不同的Hash算法 对于多通道 多链路连接的情况 xff0c 如LAG和ECMP的接口上 xff0c 交换机和路由器采用Hash算法对报文中指定的字段进行Hash计算 x
  • 2021-09-19 当SONiC遇到P4之二

    当SONiC遇到P4之二 P4描述SAI 在当SONiC遇到P4中介绍了用P4来实现SAI Model的方式 xff0c 这种方式利用了P4数据平面编程的功能实现了SAI模型 xff0c 将P4和SONiC这两个分别位于网络数据平面和控制平
  • Cmake 模板和语法

    开始一直犹豫是不是要学cmake对于一个没有项目驱动的人来数 xff0c 感觉用不用都可以 我大可用一个简单的Makefile模板来做一些简单的工程阿 或者我还可以用autotools等 不过既然已经看了一个晚上了 xff0c 还是把它弄懂
  • 2021-09-25 SONiC系统管理32 IFA

    SONiC系统管理32 IFA Inband flow analyzer SONiC系统支持Telemetry的功能 xff0c 在INT中介绍了带内遥测In band Network Telemetry INT 对于遥测的结果 xff0c
  • 自动驾驶网络

    自动驾驶网络 网络为啥要自动驾驶 网络为啥要自动驾驶 自动驾驶网络首先要解决网络测量的问题 有测量才能完成闭环的控制
  • 怎样为SONiC社区做贡献

    64 TOC 2023继续前行 怎样为SONiC社区做贡献 SONiC在社区参与者的贡献下不断成长 xff0c 已经取得了网络操作系统事实上一统江湖的地位 同时SONiC也在不断扩大应用范围 xff0c 国内知名大厂最近在SONiC社区申请

随机推荐