解析力评测(1) MTF和SFR

2023-05-16

解析力评测(1) MTF和SFR

  成像系统的解析力一直是摄像头最关键的指标之一。所有用户拿到一张照片的时候首先看到的是照片清楚不清楚,图像的清楚说得就是解析力。但是如何评价一个成像系统的解析力也是大家一直在探讨的问题。目前主流的办法主要有三种TV line检测,MTF检测,和SFR检测。

  其中TV line主要用于主观测试,也有一些读取TV line的软件如HYRes。但是总体来说没有一个具体的标准。大多数公司是以人的读取为标准。不同人的读取,以及状态的不同都会导致读取值的不稳定。而且如ISO12233 chart 实际上我们读出的线对数只能代表读出位置的状况。尤其中心的TVline跨度很大,很难反映一个成像系统在不同位置的解析力。以后有机会我们会就TV line的进行进一步的讨论。

  MTF是Modulation Transfer Function的英文简称,中文为调制传递函数。是指调制度随空间频率变化的函数称为调制度传递函数。个传递函数最开始是为了说明镜头的能力。在各个摄像头镜头中经常采用MTF描述镜头的MTF曲线,表明镜头的能力。这些曲线是通过理想的测试环境下尽量减少其它系统对镜头的解析力的衰减的情况下测试得出的。但是其实MTF也可以涵盖对整个成像系统的解析力评价。在这里咱们就不多讨论这个问题了,如果有兴趣可以开另外一篇文章讨论。

  SFR是 spatial frequencyresponse (SFR) 主要是用于测量随着空间频率的线条增加对单一影像的所造成影响。简言之SFR就是MTF的另外一种测试方法。这种测试方法在很大程度上精简了测试流程。SFR的最终计算是希望得到MTF曲线。SFR的计算方法和MTF虽然不同但是在结果上是基本一致的

  现在我们来看一下传统的MTF是怎么测量出来的,后面我们再针对SFR的原理和MTF的关系进行一些介绍。在以后的文章中我们在介绍一些MTF和SFR测试需要注意的问题。

  从上面我们知道MTF是描述不同空间频率下的调制函数。那么什么是空间频率呢?通常,描述频率的单位是赫兹(Hz),比如50Hz、100MHz之类的。但空间频率的表述习惯用“每毫米线对”。(LP/mm),就是每毫米的宽度内有多少线对。每两条线条之间的距离,以及线条本身的宽度之比是个定值,目前我国分辨率的标板规定,这个定为公因子是20√10≈1.122等比级数。一般MTF的计算离不开线对。下面这个图就是一张不同频率的线对测试图,可以看到图卡本身黑色和白色的对比是很清楚的。

  实际拍摄得到的图像,就如下图一样频率越高(越细)的线对就越模糊。但是越好的成像系统得到的线对就越清晰。

  MTF是通过找线对中最大亮度点和最小亮度点的对比度来计算的。计算公式为

  MTF=(最大亮度-最小亮度)/(最大亮度+最小亮度)。

  所以MTF的计算不会出现大于1的情况。像下面的图表示的这样,当我们测试了很多不同频率下的MTF值。通过将这些值和空间频率进行一一的对照。通过这条曲线我们就能知道现在的成像系统在什么样的空间频率下的对比度如何。也就知道了在什么频率的纹理下的解析能力。

  SFR是怎么测试和计算的呢。首先SFR不需要拍摄不同的空间频率下的线对。它只需要一个黑白的斜边(刀口)即可换算出约略相等于所有空间频率

  下的MTF 。如何通过一个斜边计算出MTF曲线建议大家可以去看下ISO12233-2000那篇文档,里面说的很详细。其具体的流程如下图。这里主要说下为什么一个斜边能够计算出本来需要大量拍摄和计算工作的才能得出的曲线

  在SFR计算中最主要的几步,SFR是通过这条斜边的图进行超采样的到一条更加细腻的黑白变换的直线(ESF)。然后通过这条直线求导得到直线的变化率(LSF)。然后对将这个变化率进行FFT(DFT)变换就能得到各个频率下的MTF的值。这里面的ESF,LSF,都是什么呢?

  点扩展函数PSF(Point Spread Function)、线扩展函数LSF(LineSpread Function)和边缘扩展函数ESF(Edge Spread Function)是SFR 计算中的几个重要的概念。点扩展函数PSF是点光源成像后的亮度分布函数,如下图所示,用PSF(X,Y)表示。点扩展函数是中心圆对称的,通常以沿x轴的亮度分布PSF(X,Y)作为成像系统的点扩展函数。

  当获取点光源像的亮度分布函数PSF(X,Y)后,对其进行二维傅里叶变换即可得MTF (u,v)。因此,从理论上讲,从PSF也是获取MTF的一个方法。但是,在实际的应用中,由于地面点光源强度很弱,此方法一般较少采用。相对于PSF来说,LSF的能量得到了一定程度的加强。因此用LSF更好。

  而ESF是什么呢? ESF其实是一条由白变黑(黑变白)的线。之所以SFR的测试图是一张斜边呢。是希望通过斜边中的多条线进行超采样,得到一条灰度变换更加平滑的线。这样减少在后面进行频域转换之后值上的误差。 ESF放大后如下图。当然它的高度是一个像素。

  PSF,ESF,LSF和 MTF这几者之间的关系如下图。因此我们就可以知道SFR的测试实际上就是通过斜边得到ESF后计算 MTF的一个过程。因此从根本上SFR和MTF是一回事。

  说实话光从这几个数学公式还是不好理解为什么ESF可以求出MTF。换一种角度理解LSF就是一条线上(ESF) 的变化的过称。对于任意一条线由黑变白的过程是由不同频率的黑白线对组成。因此可以反过来通过分析一条线得到这些频率下的 (FFT)。当然这只是一种朴素的理解。后面的文章中会有实际使用的MTF和SFR图卡和测试环境和问题进行进一步讨论。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

解析力评测(1) MTF和SFR 的相关文章

  • Redis性能测试——redis-benchmark使用教程

    谨以此作为读书摘要 xff0c 无它 xff0c 唯以后快速查阅 Redis 自带了一个叫 redis benchmark 的工具来模拟 N 个客户端同时发出 M 个请求 xff08 类似于 Apache ab 程序 xff09 你可以使用
  • pycharm配置本地python虚拟环境

    Python的版本众多 在加上适用不同版本的Python Package 这导致在同时进行几个项目时 xff0c 对库的依赖存在很大的问题 这个时候就牵涉到对Python以及依赖库的版本管理 xff0c 方便进行开发 xff0c virtu
  • Unix环境高级编程读书笔记之一——Unix基础知识

  • Unix环境高级编程读书笔记之二——文件I/O

  • VNC连接ubuntu10.04出现白屏问题解决

    使用vnc登陆界面如下 解决办法 xff1a 将 vnc xstartup文件中最后一行x window manager amp 使用 注释掉 xff0c 然后添加一行gnone session amp 然后退出所有的XWINDOWS xf
  • vnc viewer上的分辨率

    问题 xff1a 用vnc远程连接时的系统屏幕即便最大化之后 xff0c 屏幕也只是中间的一小块屏幕 xff0c 并没有跟着vnc的最大化而最大化 解决办法 xff1a 连接窗口时点选option xff0c 或者VNC窗口标题栏右键 gt
  • 在Linux中Oracle安装成功后,首次启动使用时,会出现的一些问题总结和解决办法

    注意 xff1a oracle安装不能用root用户安装 xff0c 必须新建用户安装 1 sqlplus 命令不识别问题 xff08 bash xff1a sqlplus command not found xff09 当你首次安装ora
  • 树莓派安装系统和系统备份还原

    最近有使用到树莓派做一些项目 xff0c 下面整理了下树莓派烧录系统到系统镜像备份还原的一些方法 在操作中尝试了windows和ubuntu两个系统下的烧录方式 1 树莓派官网下载Raspberry Pi Imager 登录树莓派官网 找到
  • Gazebo仿真环境中odom和baselink关联一起

    在Gazebo仿真环境中使用slam gmapping采图时发现 xff0c 没有odom数据 xff0c topic map没有数据 通过tf tree发现 odom没有和base link建立关联 日志上可以看到odom完全没有 这需要
  • 相机的变焦,对焦和景深的理解和照相機的成像原理

    首先认识焦距 xff1a 是指平行光线经透镜折射或曲面镜反射后的会聚点 xff0c 点到镜片中心的距离就是f焦距 相机成像时最清晰的位置就是感光阵列位于焦点处 焦距的作用 xff1a 焦距的大小决定着相机视野的范围大小 xff0c 一般焦距
  • 内参、外参、畸变参数三种参数与相机的标定方法与相机坐标系的理解

    有国才有家 xff0c 支持国产 xff0c 生活中点滴做起 xff0c 买手机就买华为 xff0c 这是我们国家IT界的脊梁 xff01 xff01 xff01 1 相机参数是三种不同的参数 相机的内参数是六个分别为 xff1a 1 dx
  • 基于ubuntu16.04配置VNC远程连接

    VNC官网下载https www realvnc com en connect download vnc linux 下载后的文件是VNC Server 6 3 1 Linux x86 deb xff0c 执行命令 xff1a sudo d
  • 关于Ubuntu与Debian的关系,了解!

    饮水思源 xff1a Ubuntu用户应关注Debian 当今最热门的桌面Linux非Ubuntu莫属 xff0c 它已经拥有数量众多的爱好者 xff0c 已经成为PC用户的主流操作系统之一 尽管Ubuntu相对还比较年 轻 xff0c 但
  • 最优化问题及其分类

    优化技术是一种以数学为基础 xff0c 用于求解各种工程问题优化解的应用技术 归纳而言 xff0c 最优化问题分为函数优化问题和组合优化问题两大类 xff0c 其中函数优化的对象是一定区间的连续变量 xff0c 而组合优化的对象则是解空间中
  • 50个有趣的休闲网站 (外国)

    有选择的余地是件好事 xff0c 但是如果选择太多了也让人烦恼 我们在网络上进行了搜索 xff0c 挑出了50个最有用而有趣的网站 今天互联网已经是很大的生意 无论你是想要购买一辆汽车 出售家庭产品 做生意或者收集难以找到的信息 xff0c
  • 一个不错的技术面试官是怎么样的?

    一个不错的技术面试官是怎么样的 xff1f 转载自 xff1a http t cn AiWwBM2b 作者 Jartto 作为技术面试官 xff0c 面试过程很少考虑候选人的感受 上来就是问 xff0c 不合适就送走 虽然技术环节我很专业
  • SVN update 返回值的含义

    本文来自网络 当你从代码库里面更新自己本地的工作拷贝的时候 xff0c update返回的值意思如下 xff1a u foo 文件foo更新了 xff08 从服务器收到修改 xff09 A foo 文件或目录foo被添加到工作拷贝 D fo
  • Linux DRM Graphic 显示简单介绍

    好久没有写过博客了 xff0c 工作之后平时都没有总结 xff0c 感觉像做了学到很多东西 xff0c 但是又感觉什么都没有学到 xff0c 似懂非懂 xff08 真尼玛纠结 xff09 突然别人说的一句话 xff0c 学东西不仅仅是自己学
  • Linux DRM KMS 驱动简介

    Whoops xff0c 上次写完 Linux DRM Graphic 显示简单介绍 博文后 xff0c 心情还是蛮愉悦的 xff0c 来来 xff0c 这次在说说具体的显卡驱动 1 DRM 框架分解 DRM 框架提供了一系列的 IOCTL

随机推荐

  • Vim 自动补全插件 YouCompleteMe 安装与配置

    本文系转载文章 xff0c 原文链接 http howiefh github io 2015 05 22 vim install youcompleteme plugin Contents 1 概述 2 安装 2 1 完全安装 2 2 Ub
  • Linux 中的各种栈:进程栈 线程栈 内核栈 中断栈

    转载请注明出处 xff1a http kyang cc 栈是什么 xff1f 栈有什么作用 xff1f 首先 xff0c 栈 stack 是一种串列形式的 数据结构 这种数据结构的特点是 后入先出 LIFO Last In First Ou
  • SD-WAN 到底是什么?

    转载请注明出处 xff1a http kyang cc In a nutshell SD WAN Virtualizes the networkEnables a secure overlaySimplifies services deli
  • SDN, SD-WAN, NFV, VNF: What Is All This?

    本文转载至 xff1a http www velocloud com sd wan blog sdn sd wan nfv vnf Inscrutable alphabet soup Even the fully expanded term
  • Top-down Design简介

    自顶向下 xff0c 逐步求精的方法 在英文中称作Top down Design xff0c 是一种计算机编程使用的算法思想 xff0c 顾名思义 xff0c 这种方法的思想就是对现在遇到的复杂或者抽象化的问题 xff0c 进行纵向深入分解
  • The Advantages of SD‐WAN over Traditional WAN

    转载请注明出处 xff1a http kyang cc An SD WAN has several advantages over a traditional WAN 重点内容 Simplified WAN Rapid deployment
  • 玩转 SSL 证书

    Introduction Openssl 是一个很牛逼的工具 xff0c 基本能搞定 PKI amp HTTPS 证书相关的事情 这篇博文归类了一堆常用的命令 xff0c 全部都是关于 key amp csr amp crt 本文分成两部分
  • linux简易书单

    1 Linux程序设计 xff08 第4版 xff09 万千读者推荐的Linux经典入门书 程序设计实战型图书 xff0c 以简单易懂 内容全面和示例丰富而受到广泛好评 如果你没有Linux基础 xff0c 可以先读这本 话说回来 xff0
  • 数字图像处理的技术方法和应用

    所谓数字图像处理 xff0c 是指将图像信号转换成数字信号并利用计算机对其进行处理的过程 20 世纪 50 年代 xff0c 电子计算机已经发展到一定水平 xff0c 人们开始利用计算机来处理图形和图像信息 xff0c 这便是早期的图像处理
  • hadoop安装完后打开网页http://localhost:50070/ 没反应

    在hadoop安装完后 xff0c 依次执行hadoop namenode format xff0c start dfs sh xff0c start yarn sh 之后 打开浏览器 输入 http localhost 50070 无反应
  • 关于CSDN代码段的背景颜色修改

    当我第一次去在CSDN中写代码时会发现自己的是用的 代码段 是如图下所示这种黑色的背景 那么自己想要去修改因该如何设置 1 鼠标悬停到头像上 2 点击内容管理标签 3 点击博客设置 4 在代码片样式中选择自己喜欢的样式就可以了
  • 利用VSPD、串口调试助手、Keil做串口调试

    下面详细介绍下如何用虚拟串口调试串口发送接收程序 需要用到三个软件 xff1a KEIL VSPD XP5 xff08 virtual serial ports driver xp5 1虚拟串口软件 xff09 串口调试助手 xff08 个
  • 基于机器学习的雷达信号分选和目标识别(论文阅读学习记录—持续记录)

    机器学习在雷达信号分选技术上的应用包括信号分离 确定脉冲参数 形成单部雷达脉冲序列 xff0c 然后针对雷达目标识别进行分类并划分威胁程度等 在一维距离像识别过程中包括去噪和雷达目标型号识别 该论文 xff08 学习内容 xff09 重点研
  • CMake Error: The following variables...set to NOTFOUND

    今天在编译开源OpenVslam时 xff0c 在最后阶段出现如下问题 说是DBOW2的库招不到 查看了dbow2都是正常安装的 xff0c 但是就是出问题 然后我就找到了对应的cmakelist txt文件 xff0c 将LIBS地址打印
  • PCL库调试过程中,显示当前不会命中断点,还没有为该文档加载任何符合

    最近在读PCL库中NDT源码 xff0c 搞了一个vs2019的工程将NDT部分跑了起来 xff0c 想通过打断点的方式进入源码中一步步走读代码 但是有些部分的源码可以通过断点的方式进 hpp文件 xff0c 有些确不能 比如kdtree
  • 相机矩阵(camera matrix)

    本博文主要介绍camera的参数矩阵 目录 相机小孔模型 相机矩阵 xff08 内参 xff09 相机矩阵 xff08 Intrinsic matrix xff09 图像坐标系 相机的外参矩阵 xff08 extrinsic matrix
  • Pytorch模型转ONNX

    参考https blog csdn net qq 37546267 article details 106767640 利用下面代码将pth模型转换为onnx import torch from torch autograd import
  • File already exists in database google/protobuf/descriptor.proto

    以加载静态库的方式加载protobuf库时出现如下问题 xff1a libprotobuf ERROR google protobuf descriptor database cc 57 File already exists in dat
  • assign()测试

    assign 应该属于赋值 std deque lt int gt di 1 2 3 4 5 std cout lt lt 34 at first 34 lt lt std endl std cout lt lt 34 di 61 34 f
  • 解析力评测(1) MTF和SFR

    成像系统的解析力一直是摄像头最关键的指标之一 所有用户拿到一张照片的时候首先看到的是照片清楚不清楚 xff0c 图像的清楚说得就是解析力 但是如何评价一个成像系统的解析力也是大家一直在探讨的问题 目前主流的办法主要有三种TV line检测