MPU6050工作原理及STM32控制MPU6050

2023-05-16

一·简介:

1.要想知道MPU6050工作原理,得先了解下面俩个传感器:

①陀螺仪传感器:

       陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。现代陀螺仪可以精确地确定运动物体的方位的仪器,它在现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器。传统的惯性陀螺仪主要部分有机械式的陀螺仪,而机械式的陀螺仪对工艺结构的要求很高。70年代提出了现代光纤陀螺仪的基本设想,到八十年代以后,光纤陀螺仪就得到了非常迅速的发展,激光谐振陀螺仪也有了很大的发展。光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠。光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。光纤陀螺仪同时发展的除了环式激光陀螺仪外。


加速度传感器:

      加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。

其实说简单点,在mpu6050中我们用陀螺仪传感器测角度,用加速度传感器测加速度

MPU-60X0 :

      MPU-60X0是全球首例9轴运动处理传感器。它集成了3轴MEMS陀螺仪, 3轴MEMS 加速度计,以及一个可扩展的数字运动处理器 DMP(DigitalMotion Processor),可用 I2C 接口连接一个第三方的数字传感器,比如磁力计。扩展之后就可以通过其 I2C 或 SPI 接口 输出一个 9 轴的信号(SPI 接口仅在 MPU-6000 可用)。MPU-60X0 也可以通过其 I2C 接口 连接非惯性的数字传感器,比如压力传感器。 MPU-60X0 对陀螺仪和加速度计分别用了三个 16 位的 ADC,将其测量的模拟量转化 为可输出的数字量。为了精确跟踪快速和慢速的运动,传感器的测量范围都是用户可控的, 陀螺仪可测范围为±250,±500,±1000,±2000°/秒(dps),加速度计可测范围为±2,±4, ±8,±16g。 一个片上 1024 字节的 FIFO,有助于降低系统功耗。 和所有设备寄存器之间的通信采用 400kHz 的 I2C 接口或 1MHz 的 SPI 接口(SPI 仅 MPU-6000 可用)。对于需要高速传输的应用,对寄存器的读取和中断可用 20MHz 的 SPI。 另外,片上还内嵌了一个温度传感器和在工作环境下仅有±1%变动的振荡器。 芯片尺寸 4×4×0.9mm,采用 QFN 封装(无引线方形封装),可承受最大 10000g 的冲 击,并有可编程的低通滤波器。 关于电源,MPU-60X0 可支持 VDD 范围 2.5V±5%,3.0V±5%,或 3.3V±5%。另外 MPU-6050 还有一个 VLOGIC 引脚,用来为 I2C 输出提供逻辑电平。VLOGIC 电压可取 1.8±5%或者 VDD。

         数字运动处理器(DMP):

 DMP 从陀螺仪、加速度计以及外接的传感器接收并处理数据,处理结果可以从 DMP 寄存器读出,或通过 FIFO 缓冲。DMP 有权使用 MPU 的一个外部引脚产生中断。


二·数据传输:

    1.I2C原理在上一篇博客里有详细讲解,在这里不再赘述。

如果要写 MPU-60X0 寄存器,主设备除了发出开始标志(S)和地址位,还要加一个 R/W 位,0 为写,1 为读。在第 9 个时钟周期(高电平时),MPU-60X0 产生应答信号。然 后主设备开始传送寄存器地址(RA),接到应答后,开始传送寄存器数据,然后仍然要有应 答信号,依次类推。

单字节写时序:


多字节写时序:



如果要读取 MPU-60X0 寄存器的值,首先由主设备产生开始信号(S),然后发送从设 备地址位和一个写数据位,然后发送寄存器地址,才能开始读寄存器。紧接着,收到应答信 号后,主设备再发一个开始信号,然后发送从设备地址位和一个读数据位。然后,作为从设 备的 MPU-60X0 产生应答信号并开始发送寄存器数据。通信以主设备产生的拒绝应答信号 (NACK)和结束标志(P)结束。拒绝应答信号(NACK)产生定义为 SDA 数据在第 9 个 时钟周期一直为高。 


    

三·STM32控制MPU6050

1.硬件连接

实验采用正点原子公司的 AN1507 ATK-MPU6050 六轴传感器模块

MPU6050             STM32
VCC         <--->   VCC
GND         <--->   GND
SDA         <--->   PB9
SCL         <--->   PB8
INT         <--->   不接
AD0         <--->   不接

2. 重要寄存器

2.1 电源管理寄存器 1

这里写图片描述

DEVICE_RESET 位用来控制复位,设置为 1,复位 MPU6050,复位结束后, MPU 
硬件自动清零该位

SLEEEP 位用于控制 MPU6050 的工作模式,复位后,该位为 1,即进 
入了睡眠模式(低功耗),所以我们要清零该位,以进入正常工作模式

TEMP_DIS 用于设置是否使能温度传感器,设置为 0,则使能

CLKSEL[2:0]用于选择系统时钟源,选择关系如表

CLKSEL[2:0]时钟源
000内部 8M RC 晶振
001PLL,使用 X 轴陀螺作为参考
010PLL,使用 Y 轴陀螺作为参考
011PLL,使用 Z 轴陀螺作为参考
100PLL,使用外部 32.768Khz 作为参考
101PLL,使用外部 19.2Mhz 作为参考
110保留
111关闭时钟,保持时序产生电路复位状态

**默认是使用内部 8M RC 晶振的,精度不高,所以我们一般选择 X/Y/Z 轴陀螺作为参考 
的 PLL 作为时钟源,一般设置 CLKSEL=001 即可**

2.2 陀螺仪配置寄存器

这里写图片描述 
FS_SEL[1:0]这两个位,用于设置陀螺仪的满量程范围: 0,±250° 
/S; 1,±500° /S; 2,±1000° /S; 3,±2000° /S;我们一般设置为 3,即±2000° /S,因 
为陀螺仪的 ADC 为 16 位分辨率,所以得到灵敏度为: 65536/4000=16.4LSB/(° /S)

2.3 加速度传感器配置寄存器

这里写图片描述 
AFS_SEL[1:0]这两个位,用于设置加速度传感器的满量程范围: 0, 
±2g; 1,±4g; 2,±8g; 3,±16g;我们一般设置为 0,即±2g,因为加速度传感器的 
ADC 也是 16 位,所以得到灵敏度为: 65536/4=16384LSB/g

2.4 FIFO使能寄存器

这里写图片描述 
该寄存器用于控制 FIFO 使能,在简单读取传感器数据的时候,可以不用 FIFO,设置 
对应位为 0 即可禁止 FIFO,设置为 1,则使能 FIFO

加速度传感器的 3 个轴,全由 1 
个位( ACCEL_FIFO_EN)控制,只要该位置 1,则加速度传感器的三个通道都开启 FIFO

2.5 陀螺仪采样率分频寄存器

这里写图片描述 
该寄存器用于设置 MPU6050 的陀螺仪采样频率,计算公式为:

采样频率 = 陀螺仪输出频率 / (1+SMPLRT_DIV)

这里陀螺仪的输出频率,是 1Khz 或者 8Khz,与数字低通滤波器( DLPF)的设置有关, 
当 DLPF_CFG=0/7 的时候,频率为 8Khz,其他情况是 1Khz。而且 DLPF 滤波频率一般设置 
为采样率的一半。采样率,我们假定设置为 50Hz,那么 SMPLRT_DIV=1000/50-1=19

2.6 配置寄存器

这里写图片描述 
数字低通滤波器( DLPF)的设置位,即: DLPF_CFG[2:0],加速 
度计和陀螺仪,都是根据这三个位的配置进行过滤的。 DLPF_CFG 不同配置对应的过滤情 
况如表: 
这里写图片描述 
这里的加速度传感器,输出速率( Fs)固定是 1Khz,而角速度传感器的输出速率( Fs), 
则根据 DLPF_CFG 的配置有所不同。一般我们设置角速度传感器的带宽为其采样率的一半, 
如前面所说的,如果设置采样率为 50Hz,那么带宽就应该设置为 25Hz,取近似值 20Hz, 
就应该设置 DLPF_CFG=100

2.7 电源管理寄存器 2

这里写图片描述 
LP_WAKE_CTRL 用于控制低功耗时的唤醒频率

剩下的 6 位,分别控制加速度和陀螺仪的x/y/z轴是否进入待机模式,这里我们全部都不进入待机模式,所以全部设置为 0 即可

2.8 陀螺仪数据输出寄存器

这里写图片描述 
通过读取这6个寄存器,就可以读到陀螺仪 x/y/z 轴的值,比如 x 轴的数据,可以通过读取 
0X43(高 8 位)和 0X44(低 8 位)寄存器得到,其他轴以此类推

2.9 加速度传感器数据输出寄存器

这里写图片描述 
通过读取这6个寄存器,就可以读到加速度传感器 x/y/z 轴的值,比如读 x 轴的数据,可以通过读取 0X3B(高 8 位)和0X3C(低8位)寄存器得到,其他轴以此类推

2.10 温度传感器数据输出寄存器

温度传感器的值,可以通过读取 0X41(高 8 位)和 0X42(低 8 位)寄存器得到, 
温度换算公式为:

Temperature = 36.53 + regval/340

其中, Temperature 为计算得到的温度值,单位为℃, regval 为从 0X41 和 0X42 读到的 
温度传感器值

2.11 中断使能寄存器

这里写图片描述 
OT_EN 该位置 1,该位使能运动检测(Motiondetection)产生中断。

FIFO_OFLOW_EN该位置1,该位使能FIFO缓冲区溢出产生中断。

I2C_MST_INT_EN该位置1,该位使能I2C主机所有中断源产生中断。

DATA_RDY_EN 该位置 1,该位使能数据就绪中断( Data Ready interrupt),所有的传感器寄存器写操作完成时都会产生

关闭所有中断则给此寄存器赋值0X00

3. 软件驱动

3.1 通过IIC对MPU6050寄存器进行读写

//IIC写一个字节 
//reg:      寄存器地址
//data:     数据
//返回值:  0,正常
//          其他,错误代码
u8 IIC_Write_Byte(u8 reg,u8 data)
{
    IIC_Start();
    IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令 
    if(IIC_Wait_Ack())  //等待应答
    {
        IIC_Stop(); 
        return 1;       
    }
    IIC_Send_Byte(reg); //写寄存器地址
    IIC_Wait_Ack();     //等待应答 
        IIC_Send_Byte(data);//发送数据
    if(IIC_Wait_Ack())  //等待ACK
    {
        IIC_Stop();  
        return 1;        
    }        
    IIC_Stop();  
    return 0;
}

//IIC读一个字节 
//reg:寄存器地址 
//返回值:读到的数据

u8 IIC_Read_Byte(u8 reg)
{
    u8 res;
    IIC_Start();
    IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令 
    IIC_Wait_Ack();//等待应答
    IIC_Send_Byte(reg);//写寄存器地址
    IIC_Wait_Ack();//等待应答
    IIC_Start();
    IIC_Send_Byte((MPU_ADDR<<1)|1);//发送期间地址+读命令
    IIC_Wait_Ack();//等待应答
    res=IIC_Read_Byte(0);//读取数据,发送nACK
    IIC_Stop();//产生一个停止条件
    return res;
}

//IIC连续写
//addr:器件地址
//reg: 寄存器地址
//len: 写入长度
//buf: 数据区
//返回值: 0,正常
//              其他,错误代码
u8 IIC_Write_Len(u8 addr,u8 reg,u8 len,u8 *buf)
{
    u8 i;
    IIC_Start();
    IIC_Send_Byte((addr<<1)|0);//发送器件地址+写命令
    if(IIC_Wait_Ack())//等待应答
    {
        IIC_Stop();
        return 1;
    }
    IIC_Send_Byte(reg);//写寄存器地址
    IIC_Wait_Ack();//等待应答
    for(i=0;i<len;i++)
    {
        IIC_Send_Byte(buf[i]);//发送数据
        if(IIC_Wait_Ack())//等待ACK
        {
            IIC_Stop();
            return 1;
        }
    }
    IIC_Stop();
    return 0;
}
//IIC连续读
//addr:器件地址
//reg:要读取的寄存器地址
//len:要读取得长度
//buf:读取到的数据存储区
//返回值: 0,正常
//              其他,错误代码
u8 IIC_Read_Len(u8 addr,u8 reg,u8 len,u8 *buf)
{
    IIC_Start();
    IIC_Send_Byte((addr<<1)|0);//发送器件地址+写命令
    if(IIC_Wait_Ack())//等待应答
    {
        IIC_Stop();
        return 1;
    }
    IIC_Send_Byte(reg);//写寄存器地址
    IIC_Wait_Ack();//等待应答
    IIC_Start();
    IIC_Send_Byte((addr<<1)|1);//发送器件地址+读命令
    IIC_Wait_Ack();//等待应答
    while(len)
    {
        if(len==1) *buf=IIC_Read_Byte(0);//读数据,发送nACK
        else *buf=IIC_Read_Byte(1);//读数据,发送ACK
        len--;
        buf++;
    }
    IIC_Stop();//产生一个停止条件
    return 0;
}

3.2 MPU6050初始化

//初始化MPU6050
//返回值: 0,成功
//        其他,错误代码
u8 MPU_Init(void)
{
    u8 res;
    IIC_Init();//初始化IIC总线
    IIC_Write_Byte(MPU_PWR_MGMT1_REG,0X80);//复位MPU6050
    delay_ms(100);
    IIC_Write_Byte(MPU_PWR_MGMT1_REG,0X00);//唤醒MPU6050
    MPU_Set_Gyro_Fsr(3); //陀螺仪传感器,±2000dps
    MPU_Set_Accel_Fsr(0); //加速度传感器 ±2g
    MPU_Set_Rate(50); //设置采样率50HZ
    IIC_Write_Byte(MPU_INT_EN_REG,0X00); //关闭所有中断
    IIC_Write_Byte(MPU_USER_CTRL_REG,0X00);//I2C主模式关闭
    IIC_Write_Byte(MPU_FIFO_EN_REG,0X00);//关闭FIFO
    IIC_Write_Byte(MPU_INTBP_CFG_REG,0X80);//INT引脚低电平有效
    res=IIC_Read_Byte(MPU_DEVICE_ID_REG);
    if(res==MPU_ADDR)//器件ID正确
    {
        IIC_Write_Byte(MPU_PWR_MGMT1_REG,0X01);//设置CLKSEL,PLL X 轴为参考
        IIC_Write_Byte(MPU_PWR_MGMT2_REG,0X00);//加速度陀螺仪都工作
        MPU_Set_Rate(50); //设置采样率为50HZ
    }else return 1;
    return 0;
}

//设置MPU6050陀螺仪传感器满量程范围
//fsr:0,±250dps;1,±500dps;2,±1000dps;3,±2000dps
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Gyro_Fsr(u8 fsr)
{
    return IIC_Write_Byte(MPU_GYRO_CFG_REG,fsr<<3);//设置陀螺仪满量程范围
}

//设置MPU6050加速度传感器满量程范围
//fsr:0,±2g;1,±4g;2,±8g;3,±16g
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Accel_Fsr(u8 fsr)
{
    return IIC_Write_Byte(MPU_ACCEL_CFG_REG,fsr<<3);//设置加速度传感器满量程范围
}

//设置MPU6050的数字低通滤波器
//lpf:数字低通滤波频率(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_LPF(u16 lpf)
{
    u8 data=0;
    if(lpf>=188) data=1;
    else if(lpf>=98) data=2;
    else if(lpf>=42) data=2;
    else if(lpf>=42) data=3;
    else if(lpf>=20) data=4;
    else if(lpf>=10) data=5;
    else data=6; 
    return IIC_Write_Byte(MPU_CFG_REG,data);//设置数字低通滤波器  
}

//设置MPU6050的采样率(假定Fs=1KHz)
//rate:4~1000(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Rate(u16 rate)
{
    u8 data;
    if(rate>1000)rate=1000;
    if(rate<4)rate=4;
    data=1000/rate-1;
    data=IIC_Write_Byte(MPU_SAMPLE_RATE_REG,data);  //设置数字低通滤波器
    return MPU_Set_LPF(rate/2); //自动设置LPF为采样率的一半
}

3.3 读取MPU6050相关测得原始数据

//得到温度值
//返回值:温度值(扩大了100倍)
short MPU_Get_Temperature(void)
{
    u8 buf[2]; 
    short raw;
        float temp;
        IIC_Read_Len(MPU_ADDR,MPU_TEMP_OUTH_REG,2,buf); 
    raw=((u16)buf[0]<<8)|buf[1];  
    temp=36.53+((double)raw)/340;  
    return temp*100;;
}
//得到陀螺仪值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
//    其他,错误代码
u8 MPU_Get_Gyroscope(short *gx,short *gy,short *gz)
{
    u8 buf[6],res;
    res=IIC_Read_Len(MPU_ADDR,MPU_GYRO_XOUTH_REG,6,buf);
    if(res==0)
    {
        *gx=((u16)buf[0]<<8)|buf[1];  
        *gy=((u16)buf[2]<<8)|buf[3];  
        *gz=((u16)buf[4]<<8)|buf[5];
    }   
    return res;
}

//得到加速度值(原始值)
//ax,ay,az:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
//    其他,错误代码
u8 MPU_Get_Accelerometer(short *ax,short *ay,short *az)
{
    u8 buf[6],res;  
    res=IIC_Read_Len(MPU_ADDR,MPU_ACCEL_XOUTH_REG,6,buf);
    if(res==0)
    {
        *ax=((u16)buf[0]<<8)|buf[1];  
        *ay=((u16)buf[2]<<8)|buf[3];  
        *az=((u16)buf[4]<<8)|buf[5];
    }   
    return res;;
}



本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

MPU6050工作原理及STM32控制MPU6050 的相关文章

  • Linux socket 关闭场景

    测试环境 root 64 centos192 168 1 12 cat etc system release CentOS release 6 9 Final 工具 xff1a 服务器 192 168 1 12 ipython Python
  • QGroundControl地面站二次开发环境搭建(win+linux+android)

    更新时间 xff1a 2017 6 19 大家好 xff0c 我是learn xff0c 下面主要介绍一下QGroundControl地面站的环境搭建 网上也有好多教程 xff0c 我就不再麻烦了 xff0c 补充一下好了 http blo
  • std::vector用法

    vector 是C 43 43 标准模板库中的部分内容 xff0c 它是一个多功能的 xff0c 能够操作多种数据结构和算法的模板类和函数库 vector之所以被认为是一个容器 xff0c 是因为它能够像容器一样存放各种类型的对象 xff0
  • Linux串口(serial、uart)驱动程序设计

    一 核心数据结构 串口驱动有3个核心数据结构 xff0c 它们都定义在 lt include linux serial core h gt 1 uart driver uart driver包含了串口设备名 串口驱动名 主次设备号 串口控制
  • Xshell 5 评估过期,需要采购,不能使用的解决办法

    Xshell 5 当然 xff0c 现在我们可以直接撸 Xshell 6 了 卸载原来的 Xshell 5进入 Xshell 5 官网 xff1a https www netsarang com页面上点导航栏的 Free Licence x
  • mapreduce编程(一)-二次排序

    mr自带的例子中的源码SecondarySort xff0c 我重新写了一下 xff0c 基本没变 这个例子中定义的map和reduce如下 xff0c 关键是它对输入输出类型的定义 xff1a xff08 java泛型编程 xff09 p
  • Android apk执行shell脚本 工具类

    在做Android应用时 xff0c 经常需要执行shell脚本 xff0c 以快速实现某些功能 xff1b 在Android应用程序中执行shell脚本可以省去一大堆繁琐的代码 xff0c 还可以避免不必要的错误 xff1b 比如 xff
  • Python最强装逼神技!微信远程控制电脑,想让你电脑关机就关机!

    今天带给大家一个非常有意思的 python 程序 xff0c 基于 itchat 实现微信控制电脑 你可以通过在微信发送命令 xff0c 来拍摄当前电脑的使用者 xff0c 然后图片会发送到你的微信上 甚至你可以发送命令来远程关闭电脑 程序
  • 基于ESKF的IMU姿态融合【附MATLAB代码】

    目录 0 前言1 什么是ESKF2 系统方程2 1 状态变量2 2 imu的测量值2 3 预测方程及雅克比矩阵2 4 测量方程及雅克比矩阵 3 kalman filter loop计算4 Show me the code5 代码下载链接 0
  • 【笔记】自适应卡尔曼滤波 Adaptive Extended Kalman Filter

    0 阅读文章 Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation 1 主要内容 一般情况下 xff0c kalman中的
  • 二、Docker:Dockerfile的使用、指令详解和示例

    什么是 Dockerfile xff1f Dockerfile 是一个用来构建镜像的文本文件 xff0c 文本内容包含了一条条构建镜像所需的指令和说明 使用 Dockerfile 定制镜像 1 使用 dockerfile 定制 nginx
  • # STM32中断方式实现串口通信(标准库)

    STM32中断方式实现串口通信 xff08 标准库 xff09 文章目录 STM32中断方式实现串口通信 xff08 标准库 xff09 一 串口通信原理以及中断原理一 问题分析1 涉及外设2 状态机实现 二 创建MDK xff08 kei
  • 一张图看懂阿里云网络产品[一]网络产品概览

    一张图看懂网络产品系列文章 xff0c 让用户用最少的时间了解网络产品 xff0c 本文章是第一篇 网络产品概览 系列文章持续更新中 xff0c 敬请关注 xff3b 一 xff3d 网络产品概览 xff3b 二 xff3d VPC xff
  • MapReduce原理及编程实现

    文章目录 MapReduce原理及编程实现MapReduce基本概念MapReduce执行过程Mapper阶段Reducer阶段Combiner类Partitioner类 MapReduce实现WordCountKey amp Value类
  • 2020-10-20 学习日志(Crazepony控制环)

    2020年10月20日 学习任务 xff1a 完成Crazepony控制环的理解 之前是通过姿态解算获得了 四元数 旋转矩阵 欧拉角 CtrlAttiRate void CtrlAttiRate void float yawRateTarg
  • STL学习笔记之迭代器--iterator

    STL设计的精髓在于 xff0c 把容器 xff08 Containers xff09 和算法 xff08 Algorithms xff09 分开 xff0c 彼此独立设计 xff0c 最后再用迭代器 xff08 Iterator xff0
  • 提升工作效率之PCB设计软件“立创EDA”

    文章目录 前言一 立创EDA二 PCB生产三 团队功能总结 前言 由于工作需要设计一款硬件调试小工具 xff0c 考虑到器件采购和PCB制版都在立创商城上进行 xff0c 索性就试用立创EDA进行PCB设计 结论在前 xff1a 立创线上E
  • nvidia显卡,驱动以及cuda版本对应查询

    实验室新买了一块rtx 2080和titan rtx xff0c 需要分别配置驱动和cuda xff0c 但是一直也找不到显卡和cuda的官方对照表 xff0c 每次都是百度 谷歌 必应 xff0c 参考别人安装之旅 今天突然发现了驱动和c
  • LoRa 信噪比和接收灵敏度

    文章目录 前言一 信噪比极限 xff08 SNR LIMIT xff09 二 接收灵敏度 前言 介绍信噪比极限和如何计算接收灵敏度 参考资料 xff1a LoRa信噪比和接收灵敏度 一 信噪比极限 xff08 SNR LIMIT xff09
  • C在字符串后面加/0和0

    使用复制字符串时 xff0c 经常会遇到字符串后面跟着一大堆莫名其妙的字符串 xff0c 例如屯屯屯 之类的东西 xff0c 这是因为在使用字符串时没有在字符串结尾加 0或0 通常分配一块内存到堆上或栈上时 xff0c 内存区域可能会有之前

随机推荐

  • 基于k8s+prometheus实现双vip可监控Web高可用集群

    目录 一 规划整个项目的拓扑结构和项目的思维导图 二 修改好各个主机的主机名 xff0c 并配置好每台机器的ip地址 网关和dns等 2 1修改每个主机的ip地址和主机名 2 2 关闭firewalld和selinux 三 使用k8s实现W
  • PX4源码开发人员文档(一)——软件架构

    软件架构 PX4 在广播消息网络内 xff0c 按照一组节点 xff08 nodes xff09 的形式进行组织 xff0c 网络之间使用像如 姿态 和 位置 之类的语义通道来传递系统状态 软件的堆栈结构主要分为四层 应用程序接口 提供给a
  • ardupilot线程理解

    对于apm和pixhawk一直存在疑惑 xff0c 到现在还不是特别清楚 今天在http dev ardupilot com 看到下面的说明 xff0c 感觉很有用 xff0c 对于整体理解amp代码很有帮助 xff0c 所以记下来 转载请
  • Pixhawk源码笔记三:串行接口UART和Console

    这里 xff0c 我们对 APM UART Console 接口进行讲解 如有问题 xff0c 可以交流30175224 64 qq com 新浪 64 WalkAnt xff0c 转载本博客文章 xff0c 请注明出处 xff0c 以便更
  • C/C++中二维数组和指针关系分析

    在C c 43 43 中 xff0c 数组和指针有着密切的关系 xff0c 有很多地方说数组就是指针式错误的一种说法 这两者是不同的数据结构 其实 xff0c 在C c 43 43 中没有所谓的二维数组 xff0c 书面表达就是数组的数组
  • 四叉树空间索引原理及其实现

    今天依然在放假中 xff0c 在此将以前在学校写的四叉树的东西拿出来和大家分享 四叉树索引的基本思想是将地理空间递归划分为不同层次的树结构 它将已知范围的空间等分成四个相等的子空间 xff0c 如此递归下去 xff0c 直至树的层次达到一定
  • DirectXShaderCompiler mac编译

    Directxshader compiler mac编译 1 前置条件 Please make sure you have the following resources before building GitPython Version
  • intel -tbb 源码cmake构建

    cmake minimum required VERSION 3 0 0 FATAL ERROR set CMAKE CXX STANDARD 17 project tbb CXX add library tbb SHARED void c
  • 如何修改数据库密码

    多可文档管理系统是自带数据库的 xff0c 就是你在安装多可文档管理系统的同时 xff0c 数据库就已经自动安装上了 这个数据库有个默认密码 xff0c 为了数据库里的数据安全 xff0c 建议你安装完多可后 xff0c 就立刻修改数据库的
  • iOS编译openmp

    1 下载openmp源码 https github com llvm llvm project releases download llvmorg 14 0 6 openmp 14 0 6 src tar xz 2 下载ios toolch
  • 我的2013-从GIS学生到GIS职业人的飞跃

    我的 2013 从 GIS 学生GIS 职业人的飞跃 前言 xff1a 从末日中度过了 2012 年 xff0c 我们伟大的人类把这个世界末日的谎言给揭穿了 xff0c 但是不知不觉中 xff0c 2013 年又即将悄悄从我们身边溜走 xf
  • 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中非常重要的一个概念 在遥感领域也是经常用到 xff0c 比如多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量 根据普通线性代数中的概念 xff0c 特征值和
  • windows多线程详解

    在一个牛人的博客上看到了这篇文章 xff0c 所以就转过来了 xff0c 地址是http blog csdn net morewindows article details 7421759 本文将带领你与多线程作第一次亲密接触 xff0c
  • tiff文件读取

    以下是VC下读取TIFF文件的代码 char szFileName 61 34 K 地图 fujian DEM fujian1 tif 34 TIFF tiff 61 TIFFOpen szFileName 34 r 34 打开Tiff文件
  • GIS开发人员需要掌握的知识和技能

    对于GIS行业 xff0c 可能很多人不是很了解 xff0c 对我来说也不是很了解 xff0c 在此呢 xff0c 我就我自己的看法发表一下简单的看法 xff0c 有什么不同的意见可以一起交流 GIS虽说是属于地理科学或者说测绘科学与技术的
  • GIS算法的一点理解

    在GIS这个专业也混了好几年了 xff0c 但是始终没有对GIS算法有过真正的研究 xff0c 可以说大部分不懂 目前关于GIS算法的书籍不是特别多 xff0c 数来数去也就那么几本 xff0c 南师大几个老师编写的地理信息系统算法基础 x
  • char*转LPCWSTR解决方案

    在Windows编程中 xff0c 经常会碰到字符串之间的转换 xff0c char 转LPCWSTR也是其中一个比较常见的转换 下面就列出几种比较常用的转换方法 1 通过MultiByteToWideChar函数转换 MultiByteT
  • 一阶互补滤波,二阶互补滤波,卡尔曼滤波

    一阶互补 a 61 tau tau 43 loop time newAngle 61 angle measured with atan2 using the accelerometer 加速度传感器输出值 newRate 61 angle
  • 项目实用makefile

    在上一篇文章 小项目实用makefile 中 xff0c 已经说明了单个makefile管理层次目录的局限性 本文 xff0c 主要总结一下项目中的一种实用makefile树写法 xff0c 为10来个人协作的中小型项目makefile编写
  • MPU6050工作原理及STM32控制MPU6050

    一 简介 1 要想知道MPU6050工作原理 xff0c 得先了解下面俩个传感器 xff1a 陀螺仪传感器 xff1a 陀螺仪的原理就是 xff0c 一个旋转物体的 旋转轴所指的方向在不受外力影响时 xff0c 是不会改变的 人们根据这个道