stm32 fsmc 功能讲解

2023-05-16

LCD有如下控制线:
CS:Chip Select 片选,低电平有效
RS:Register Select 寄存器选择
WR:Write 写信号,低电平有效
RD:Read 读信号,低电平有效
RESET:重启信号,低电平有效
DB0-DB15:数据线

假如这些线,全部用普通IO口控制。根据LCD控制芯片手册(大部分控制芯片时序差不多):
如果情况如下:
DB0-DB15的IO全部为1(表示数据0xff),也可以为其他任意值,这里以0xff为例。
CS为0(表示选上芯片,CS拉低时,芯片对传入的数据才会有效)
RS为1(表示DB0-15上传递的是要被写到寄存器的值),如果为0,表示传递的是数据。(这里原作者应该是搞反了,应该是:RS = 0时,表示读写寄存器;RS = 1表示读写数据RAM。
WR为0,RD为1(表示是写动作),反过来就是读动作。
RESET一直为高,如果RESET为低,会导致芯片重启。
这种情况,会导致一个值0xff被传入芯片,被LCD控制芯片当作写寄存器值去解析。LCD控制芯片收到DB0-15上的值之后,根据其他控制线的情况,它得出结论,这个0xff是用来设置寄存器的。一般情况下,LCD控制芯片会把传入的寄存器值的高8位当做寄存器地址(因为芯片内部肯定不止一个寄存器),低8位当做真正的要赋给对应寄存器值。这样,就完成了一个写LCD控制芯片内部寄存器的时序。

如果上述情况不变,只将RS置低,那么得到的情况如下:LCD控制芯片会把DB0-15上的数据当做单纯的数据值来处理。那么假如LCD处在画图状态,这个传入的值0xff,就会被显示到对应的点上,0xffff就表示白色,那么对应的点就是白色。在这个数据值传递过来之前,程序肯定会通过设置寄存器值,告诉LCD控制芯片要写的点的位置在哪里。

如果上述两种情况都不变,分别把WR和RD的信号反过来(WR=1,RD=0),那么写信号就会被变成读信号。读信号下,主控芯片需要去读DB0-15的值,而LCD控制芯片就会去设置DB0-15的值,从而完成读数据的时序。

读寄存器的时序麻烦一点。第一步,先要将WR和RD都置低,主控芯片通过DB0-15传入寄存器地址。第二步就和前面读数据一样,将WR置高,RD置低,读出DB0-15的值即可。在这整个的过程中,RS一直为低。

好了,上面就是IO直接控制LCD的方法。假如放到STM32里面,用IO直接控制显得效率很低。STM32有FSMC(其实其他芯片基本都有类似的总线功能),FSMC的好处就是你一旦设置好之后,WR、RD、DB0-DB15这些控制线和数据线,都是FSMC自动控制的。打个比方,当你在程序中写到:
*(volatile unsigned short int *)(0x60000000)=val;
那么FSMC就会自动执行一个写的操作,其对应的主控芯片的WE、RD这些脚,就会呈现出写的时序出来(即WE=0,RD=1),数据val的值也会通过DB0-15自动呈现出来(即FSMC-D0:FSMC-D15=val)。地址0x60000000会被呈现在数据线上(即A0-A25=0,地址线的对应最麻烦,要根据具体情况来,好好看看FSMC手册)。
那么在硬件上面,我们需要做的,仅仅是MCU和LCD控制芯片的连接关系:
WE-WR,均为低电平有效
RD-RD,均为低电平有效
FSMC-D0-15接LCD DB0-15
连接好之后,读写时序都会被FSMC自动完成。但是还有一个很关键的问题,就是RS没有接,CS没有接。因为在FSMC里面,根本就没有对应RS和CS的脚。怎么办呢?这个时候,有一个好方法,就是用某一根地址线来接RS。比如我们选择了A16这根地址线来接,那么当我们要写寄存器的时候,我们需要RS,也就是A16置高。软件中怎么做呢?也就是将FSMC要写的地址改成0x60020000,如下:
*(volatile unsigned short int *)(0x60020000)=val;
这个时候,A16在执行其他FSMC的同时会被拉高,因为A0-A18要呈现出地址0x60020000。0x60020000里面的Bit17=1,就会导致A16为1。
当要读数据时,地址由0x60020000改为了0x60000000,这个时候A16就为0了。

那么有朋友就会有疑问,第一,为什么地址是0x6xxxxxxx而不是0x0xxxxxxx;第二,CS怎么接;第三,为什么Bit17对应A16?
先来看前两个问题,大家找到STM32的FSMC手册,在FSMC手册里面,我们很容易找到,FSMC将0x60000000-0x6fffffff的地址用作NOR/PRAM(共256M地址范围)。而这个存储块,又被分成了四部分,每部分64M地址范围。当对其中某个存储块进行读写时,对应的NEx就会置低。这里,就解决了我们两个问题,第一,LCD的操作时序,和NOR/PRAM是一样的(为什么一样自己找找NOR/PRAM的时序看看),所以我们选择0x6xxxxxxx这个地址范围(选择这个地址范围,操作这个地址时,FSMC就会呈现出NOR/PRAM的时序)。第二,我们可以将NEx连接到LCD的CS,只要我们操作的地址是第一个存储块内即可(即0-0x3ffffff地址范围)。

第三个问题再来看一看FSMC手册关于存储器字宽的描述,我们发现,当外部存储器是16位时,硬件管脚A0-A24表示的是地址线A1-A25的值,所以我们要位移一下,Bit17的值,实际会被反应到A16这根IO来。关于数据宽度及位移的问题,初学的朋友可能会比较疑惑,当你接触了多NOR/PRAM这样的器件后,你会发现,很多芯片的总线,都是这样设计的,为的是节省地址线。

PS:看到这里还是不明白,于是查了下手册,有这么一个图,大意是若外部设备的地址宽度是8位的,则HADDR[25:0]与STM32的CPU引脚FSMC_A[25:0]一一对应,最大可以访问64M字节的空间。若外部设备的地址宽度是16位的,则是HADDR[25:1]与STM32的CPU引脚FSMC_A[24:0]一一对应。

HADDR

FSMC_A

25

·

·

1

24

·

·

0

就是上图这个意思,这里的HADDR是需要转换到外部设备的内部AHB地址线,每个地址对应一个字节单元。所以我的理解是:上面出现的地址0x60020000,是工作于CPU内部的地址,体现在HADDR上面是17脚,但是转换到硬件引脚上就是FSMC_A16脚了(因为从上图看来,地址正好是差1,虽然HADDR的地址0并没有,但是可以虚构一下,就当它有了,呵呵),与液晶屏的RS脚相连。

                                                  ——纯粹个人瞎理解,老是感觉再看的时候跟新的一样,还是用自己的话记录一下吧

那么上面就完全解决了LCD驱动如何接FSMC的问题,如果读者没懂,建议将上述文字抄上一遍,FSMC手册对应NOR/PRAM的章节抄一遍。还没懂,就继续抄一遍,抄到懂为止。
虽然上述只是针对LCD讲解了FSMC,但是其实对NOR和外部RAM的操作也是类似的,只不过多了些地址线来寻址而已。--By YuanYin.

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

stm32 fsmc 功能讲解 的相关文章

随机推荐

  • Sentinel源码分析(四) - 限流规则

    64 Author xff1a zxw 64 Email xff1a 502513206 64 qq com 目录 Sentinel源码分析 一 初识SentinelSentinel源码分析 二 Entry构建Sentinel源码分析 三
  • Sentinel源码分析(五) - 熔断降级

    64 Author xff1a zxw 64 Email xff1a 502513206 64 qq com 目录 Sentinel源码分析 一 初识SentinelSentinel源码分析 二 Entry构建Sentinel源码分析 三
  • 无人机姿态解算:四元数及其与欧拉角的转换

    无人机姿态解算 xff1a 四元数及其与欧拉角的转换 引言 xff1a 获得无人机飞行时的飞行姿态对于无人机稳定控制来说至关重要 无人机主要通过传感器数据融合来进行状态估计 xff0c 常用于无人机的传感器包括 xff1a MPU xff0
  • 无涯教程:Docker - Node.js安装

    无涯教程网 Node js是一个JavaScript框架 xff0c 用于开发服务器端应用程序 xff0c 它是一个开放源代码框架 xff0c 可以在各种操作系统上运行 现在 xff0c 我们将看到启动和运行用于Node js的Docker
  • MVVM + dataBinding

    MVVM 43 dataBinding mvvm模式不做过多讲解 xff0c 参考下面文章或其他文章对mvvm描述 http www jianshu com p 6872b699879d 后面又发现一篇比较好的文章 xff0c 补上 htt
  • IDEA中报错 java: 程序包org.apache.ibatis.annotations不存在

    执行一句 xff1a mvn idea xff1a idea 问题解决了 xff0c 应该是maven版本不一致导致的错误 xff01
  • Windows Server 2016 重置密码

    问题描述 xff1a 今天上午的时候 xff0c 系统提示我 xff0c 密码过期 xff0c 需要修改密码 xff0c 我上午就没处理 xff0c 等到下午去处理的时候 xff0c 告诉我 xff0c 在登陆前 xff0c 必须修改用户的
  • 城市列表第三方集成

    城市列表首先要导入两个依赖 xff0c 根据信息放入正确的位置 1 在本app的gradle里面 compile 39 com github andyoom citypicker v1 0 4 39 2 在项目的工作空间build grad
  • Srpingboot+Redis redisTemplate 报空指针异常(注入为NULL)

    今天整合Springboot 43 redis做测试的时候发现了 redisTemplate报空指针错误 原因是注入时候redisTemplate就是null 查了一下后面发现是容器没有启动 单纯的测试是无法注入的 要在测试类上加上 spa
  • KDD 2020 推荐系统论文一览

    作者 学派 链接 https zhuanlan zhihu com p 161705748 编辑 深度传送门 KDD是推荐领域一个顶级的国际会议 本次接收的论文按照推荐系统应用场景可以大致划分为 xff1a CTR预估 TopN推荐 对话式
  • android Button按下及抬起监听事件

    首先我们在 布局中 xff0c 写入Button按钮 lt xml version 61 34 1 0 34 encoding 61 34 utf 8 34 gt lt LinearLayout xmlns android 61 34 ht
  • JZVIdeoPlayer(节操视频播放)

    比如jiecao的视频播放 依赖一个是视频 xff0c picasso 图片加载框架 compile 39 cn jzvd jiaozivideoplayer 6 0 0 39 compile 39 com squareup picasso
  • Android Apk编译的apk安装失败解决

    一 xff1a 如果直接拷贝到手机进行安装 提示安装失败 xff0c 解决有两种 第一 xff1a 在我们项目中的 gradle properties 文件中加入 xff0c 下面的那句 android injected testOnly
  • Android APP第三方支付流程

    手机APP 支付宝接入 1 开发前准备 xff1a 申请一个通过实名认证的企业支付宝账号 下载SDK开发包 提供APP apk以备审核 xff0c 审核通过后即可进行代码集成 2 流程 流程图 xff1a 流程解释 xff1a app携带支
  • Android介绍如何生成keystore 文件并使用

    cmd下 进入到jdk的bin目录 xff0c 这样的话 xff0c android keystore文件就会生成在这个目录下 签名的时候我们需要这个文件 C Program Files Java jdk1 7 0 01 bin gt ke
  • android代码APK混淆

    实际的产品研发中为了防止自己的劳动成果被别人窃取 xff0c 混淆代码能有效防止apk文件被反编译 xff0c 进而查看源代码 说来惭愧 xff0c 作为互联网创业公司的我们也确实对竞品Apk反编译研究过 xff0c 如果Apk混淆之后确实
  • android资源文件混淆

    前面一篇文章我们说过Apk的混淆 xff0c 除了源代码的混淆 xff0c 还有资源文件的混淆 微信推出的apk资源混淆方案 xff0c 该方案的具体原理课参见 xff1a 安装包立减1M 微信Android资源混淆打包工具 微信资源混淆工
  • WebView使用

    https www cnblogs com xunzhi p 6023190 html span class hljs keyword public span span class hljs class span class hljs ke
  • 最新研究:AI已可诊断50种眼疾,1.2秒内确认神经系统疾病

    本文由人工智能观察编译 译者 xff1a Sandy 近年来 xff0c 人工智能技术与医疗健康领域的融合不断加深 xff0c 且在科技巨头与资本巨头积极布局的努力下 xff0c 智能医疗正在不断取得新的突破 而根据 自然医学 xff08
  • stm32 fsmc 功能讲解

    LCD有如下控制线 xff1a CS xff1a Chip Select 片选 xff0c 低电平有效 RS xff1a Register Select 寄存器选择 WR xff1a Write 写信号 xff0c 低电平有效 RD xff