飞控信号SBUS信号解析为PWM信号输出

2023-05-16

飞控信号SBUS信号解析为PWM信号输出
1.修改STM32时钟频率:
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;

/!< SYSCLK, HCLK, PCLK2 and PCLK1 configuration —————————/
/!< Enable HSE /
RCC->CR |= ((uint32_t)RCC_CR_HSEON);

/!< Wait till HSE is ready and if Time out is reached exit /
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSEStartUp_TimeOut));

if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}

if (HSEStatus == (uint32_t)0x01)
{
/!< Enable Prefetch Buffer /
FLASH->ACR |= FLASH_ACR_PRFTBE;

/*!< Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

/*!< HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;

/*!< PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;

/*!< PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

/*!< PLLCLK = 8MHz * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL3); **//RCC_CFGR_PLLMULL3设置倍频倍数:输出时钟频率=倍频数*晶振时钟**

/*!< Enable PLL */
RCC->CR |= RCC_CR_PLLON;

/*!< Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}

/*!< Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

/*!< Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}

}
else
{ /*!< If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */

/*!< Go to infinite loop */
while (1)
{
}

}
}
2.串口时钟配置
打开串口时钟
void RCC_Configuration(void) // 启动USART1,2,3的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE); //注意各串口所对应的时钟源不一样;
Uart1 用的是APB2
Uart2 用的是APB1
Uart3 用的是APB1
//奇偶检验
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_WordLength = USART_WordLength_9b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_Even;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

偶校验因为在每个字节后增加一位用于奇偶校验,因此每字节长度不是8位,而是9字节。

3.串口中断设置
#if 1
//初始化参数设置
USART_InitStructure.USART_BaudRate = 100000;//100000; //波特率100000
USART_InitStructure.USART_WordLength = USART_WordLength_9b; //字长8位
USART_InitStructure.USART_StopBits = USART_StopBits_2; //2位停止字节,USART_StopBits_2
USART_InitStructure.USART_Parity = USART_Parity_Even;//偶校验 //USART_Parity_No; //无奇偶校验
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//打开Rx接收和Tx发送功能
USART_Init(USART3, &USART_InitStructure); //初始化
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); //使能串口中断,这个必须加上
USART_Cmd(USART3, ENABLE); //启动串口
#endif
4.sbus协议:
S-BUS protocol

The protocol is 25 Byte long and is send every 14ms (analog mode) or 7ms (highspeed mode).
One Byte = 1 startbit + 8 databit + 1 paritybit + 2 stopbit (8E2), baudrate = 100’000 bit/s
The highest bit is send first. The logic is inverted (Level High = 1)

[startbyte] [data1] [data2] …. [data22] [flags][endbyte]

startbyte = 11110000b (0xF0)

data 1-22 = [ch1, 11bit][ch2, 11bit] …. [ch16, 11bit] (ch# = 0 bis 2047)
channel 1 uses 8 bits from data1 and 3 bits from data2
channel 2 uses last 5 bits from data2 and 6 bits from data3
etc.

flags = bit7 = ch17 = digital channel (0x80)
bit6 = ch18 = digital channel (0x40)
bit5 = Frame lost, equivalent red LED on receiver (0x20)
bit4 = failsafe activated (0x10)
bit3 = n/a
bit2 = n/a
bit1 = n/a
bit0 = n/a

endbyte = 00000000b
3.接收程序实现:
在STM32中的具体实现,除了如上述内容配置串口参数,还需要写好中断函数,写好解析函数。思路很简单,利用间隔时间来区分两帧,收到一帧数据后,做如下检查:

  1. 字节数够不够?

  2. 第一个字节是不是0x0f?

  3. 最后一个字节是不是0x00?

  4. 检查flag中的标志位

举个中断接收函数例子:

void UART4_IRQHandler(void)

{

     static uint8_t byteCNT = 0;
     static uint32_t lastTime = 0;
     uint32_t curTime;
     uint32_t interval = 0;
     HAL_NVIC_ClearPendingIRQ(UART4_IRQn);
     //如果时间间隔大于3毫秒,则认为是新的一帧

     if(lastTime == 0)

     {

               curTime = HAL_GetTick();
               lastTime = curTime;

     }

     else

     {

              curTime = HAL_GetTick();
               interval = curTime - lastTime;
               lastTime = curTime;



               if(interval >= 3)

               {

                        if(byteCNT == 25 && uart4_cache1[0] == 0x0f && uart4_cache1[24] == 0x00)

                        {

                                 rc_captured = 0;
        memcpy(uart4_cache2, uart4_cache1, byteCNT);

                                 rc_captured = 1;

                        }

                        byteCNT = 0;

               }

     }
     if(RESET != __HAL_UART_GET_FLAG(&huart4, UART_FLAG_ORE))

     {
               __HAL_UART_CLEAR_FLAG(&huart4, UART_FLAG_ORE);
               uart4_cache1[byteCNT++] = huart4.Instance->DR;
     }        
     if(RESET != __HAL_UART_GET_FLAG(&huart4, UART_FLAG_RXNE))

     {
              uart4_cache1[byteCNT++] = huart4.Instance->DR;

     }

}

4.sbus解析程序:

8楼
楼主| 发表于 2012-7-25 15:43 | 只看该作者
收到25包据后,通过下面的算法,可以对SBUS数据包进行解析
解析后数据如下

摇杆行程
中点 1024
+100 1696
+135 1931
-100 352
-135 117

回复

举报

huperzhu

9楼
楼主| 发表于 2012-7-25 15:44 | 只看该作者
算法

define

SBUS_SIGNAL_OK

0

define

SBUS_SIGNAL_LOST
1

define

SBUS_SIGNAL_FAILSAFE

2

unsigned int channels[20];

unsigned char sbus_data[30];

unsigned char failsafe_status,byte_in_sbus,bit_in_sbus,ch,bit_in_channel;

if(SBUS_IN_OK == 1)

{

SBUS_IN_OK = 0;

sbus_flag = sbus_convert(sbus_data);

if((sbus_flag == 0) && (failsafe_status==0))

{

update_PWM(channels);

}

}

unsigned char sbus_convert(unsigned char *data_in)

{

int i;

if ((data_in[0]==0x0F) && (data_in[24] == 0))

{

// clear channels[]

for (i=0; i<16; i++) {channels = 0;}

// reset counters

byte_in_sbus = 1;

bit_in_sbus = 0;

ch = 0;

bit_in_channel = 0;

// process actual sbus data

for (i=0; i<176; i++) {

if (data_in[byte_in_sbus] & (1<

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

飞控信号SBUS信号解析为PWM信号输出 的相关文章

  • STM32通用定时器实现pwm输出、输入捕获

    简介 以stm32f103rct6为例 xff0c 下面说明如何使用通用定时器实现pwm输出 详细 stm32的定时器有多种类型 xff0c 有RTC 基本定时器 通用定时器 高级定时器 下面我们选择通用定时器来实现pwm输出功能 利用比较
  • 蓝桥杯之单片机学习(十)——PWM脉宽调制信号的发生与控制

    文章目录 一 训练任务1 1 具体要求 二 代码展示三 一些介绍 一 训练任务 在CT107D单片机综合训练平台上 xff0c 利用PWM脉宽信号实现独立按键S7对L1指示灯亮度变化的控制 1 1 具体要求 PWM脉宽信号的频率为100Hz
  • 飞控信号SBUS信号解析为PWM信号输出

    飞控信号SBUS信号解析为PWM信号输出 1 修改STM32时钟频率 xff1a static void SetSysClockTo72 void IO uint32 t StartUpCounter 61 0 HSEStatus 61 0
  • Simulink 使用C语言发PWM波 (一)

    1 在matlab中安装C语言模块mingw 2 在simulink中引用S Function模块 和S Function Examples模块 3 使用S Function Examples模块创建C文件 双击S Function Exa
  • STM32解析SBUS信号例程详解

    文章目录 1 SBUS信号简介2 STM32F7解析SBUS信号例程 xff08 1 xff09 串口配置 xff08 2 xff09 串口中断接收 xff08 3 xff09 信号解析 1 SBUS信号简介 最近在搞一个项目的通信和控制
  • APM中SBUS信号解析

    一 SBUS信号概述 SBUS信号以串口传输 xff0c 波特率为100000bps 每2ms一帧 xff0c 一帧25个字节 其中第0字节为起始帧 xff0c 固定为0x0F 第24字节为帧尾 第1 22字节为1 16比例通道数据字节 第
  • SBUS协议(20200210)

    最近看到很多sbus协议 xff0c 就专门搜集了一些资料学习一下 1 介绍 SBUS是一个接收机串行总线输出 xff0c 通过这根总线 xff0c 可以获得遥控器上所有通道的数据 目前很多模型及无人机电子设备都支持SBUS总线的接入 使用
  • 基于px4的hc-sr04-pwm超声波模块的驱动开发

    一直想实现无人的避障功能 xff0c 但是px4源生代码又不支持避障 xff0c 所以只能自己动手写 避障的基础条件还是获取距离数据 xff0c 超声波模块就是最熟悉也是最简单的模块了 px4源生代码也支持了几种超声波模块 xff0c 但是
  • px4的PWM是如何输出的

    如果有io芯片 xff0c 且使用了io作为输出PWM的设备 则fmu将mixer传输给io xff0c io进行混控计算并输出PWM xff0c 将pwm结果传递回fmu xff0c 此时无app订阅acuator outpus xff0
  • pixhawk: px4代码初学分析:追溯电机控制--pwm输出

    追溯电机控制 pwm输出 正常工作状态下pwm输出过程简述 xff1a 其他状态下pwm输出 xff1a 正常工作状态下pwm输出过程简述 xff1a 姿态解算部分得出姿态控制量通过px4io cpp把姿态控制量发送给IOIO串口读取姿态控
  • DSP的PWM

    PRD 周期寄存器 xff0c 决定了PWM的周期 频率 CMP 比较寄存器 xff0c 决定了PWM的占空比 CRT 计数寄存器 PWM原理图 为什么需要PWM
  • 浅谈PWM控制电机

    先简单说说这几种模式 1 双极模式 xff0c 即电枢电压极性是正负交替的 xff0c 优点 xff1a 能正反转运行 xff0c 启动快 xff0c 调速精度高 xff0c 动态性能好 xff0c 调速静差小 xff0c 调速范围大 xf
  • STM32CUBEMX使用PWM+DMA驱动WS2812

    STM32CUBEMX使用PWM 43 DMA驱动WS2812 首先在stm32cubemx中设置pwm和dma 我设置了TIM1的CH1为PWM引脚编写DMA响应函数 xff0c 即PWM DMA完成数据发送后的回调函数 PWM DMA
  • PX4飞控之PWM输出控制

    PX4飞控之PWM输出控制 多旋翼电调如好盈XRotor xff0c DJI通用电调等都支持PWM信号来传输控制信号 常用的400Hz电调信号对应周期2500us xff0c 一般使用高电平时间1000us 2000us为有效信号区间 xf
  • STM32输出PWM波形错误解析

    一 背景 项目中需要用STM32F407输出4路PWM波形控制两个A4950模块 xff0c 从而驱动2个直流电机 使用TIM1的在PE9 PE11 PE13 PE14上分别产生4路PWM波形 xff0c 前两路 xff08 记作pwm1
  • STM32Cube的PWM控制基础篇(一)一路PWM设置

    以下是有关STM32cube的PWM的花式操作 xff0c 大佬们在看下面链接之前建议先看完本博客 xff0c 个人觉得写的比较详细 xff0c 欢迎大佬之指正 xff01 STM32Cube的PWM控制基础篇 xff08 二 xff09
  • jetson nx fan auto pwm

    参考 xff1a Jetson Nano PWM自动调速 Ay yzx的博客 CSDN博客 代码 xff1a usr bin env python import os import commands from the path of thi
  • 魔方机器人之下位机编程---------舵机控制

    1 春天180 舵机 SR 403P 信号线和控制线颜色对应关系 两黑一白 白色信号线 中间电源 另一黑色电源 以上MC9S12XS128单片机通道三产生的周期为20ms 高电平为1 5ms的舵机控制信号 void PWM Init voi
  • PWM 互补两个引脚输出相同的PWM波形 CH1 和CH1N

    将互补CH1N 输出pwm与CH1输出相同的波形 TIM OCInitStructure TIM OCPolarity TIM OCPolarity Low 输出极性 TIM输出比较极性高 TIM OCInitStructure TIM O
  • STM32通用定时器输出PWM控制舵机 —— 重装载值、比较值、当前值

    参考 stm32 定时器输出PWM原理及工作原理 控制舵机 作者 点灯小哥 发布时间 2021 03 09 23 17 52 网址 https blog csdn net weixin 46016743 article details 11

随机推荐

  • Mysql基础(十九):锁

    目录 1 Mysql锁机制 1 1 乐观锁和悲观锁 1 1 1 乐观锁 1 1 2 悲观锁 1 2 共享锁与排他锁 1 2 1 共享锁 1 2 2 排他锁 1 3 行锁与表锁 1 3 1 行锁 1 3 2 表锁 1 4 间隙锁 1 4 1
  • 大数据时代的图表可视化利器——highcharts,D3和百度的echarts

    还记得阿里巴巴那个令人澎湃激情的双十一吗 xff1f 还记得淘宝生动形象地把你的的消费历程一一地展示给你看吗 xff1f 还记得那些酷炫拽的it报告图表吗 xff1f 在这个大数据越来越盛行的年代 xff0c 怎样去表达一些用户的关系 xf
  • 对三层和MVC的认识过程

    三层架构就是 MVC xff01 起初老师总说三层 MVC xff0c MVC 三层架构 所以开始的时候脑子就一个概念 xff1a 三层就是 MVC xff0c MVC 就是三层架构 而且想想也合理啊 xff0c 都是 三 MVC 是三个字
  • ROS雷达包出现:ERROR: cannot launch node of type: rplidar_ros

    ROS雷达包出现 xff1a ERROR cannot launch node of type rplidar ros 问题分析详情 问题分析 仅安装了基础ROS xff0c rplidar ros包没有安装 详情 下载包并解压缩 1 使用
  • nvidia-smi出现的比较慢

    一个比较老的问题 xff0c 一般四卡以上的机器可能会出现 以前我都是 nvidia span class hljs attribute smi span span class hljs attribute pm span span cla
  • 【tensorflow】tensorflow的安装及应用

    安装tensorflow的三种方法 1 在cmd命令行中输入pip install tensorflow xff0c 默认安装最新版 2 其他旧版本的安装 xff0c 去pypi org官网 可以点击release history选择想要的
  • 汇编:stmdb和ldmia指令

    参考了网上一些文章 xff0c 简单说一下stmdb和ldmia指令的作用 xff0c 如有错误欢迎指正 首先一句话说一下stmdb和ldmia指令 的作用 xff1a stmdb和ldmia指令一般配对使用 xff0c stmdb用于将寄
  • ARM 内联汇编 加速 算法

    首推移动端arm cpu优化学习笔记第4弹 内联汇编入门 xff0c 但是其只给出了代码 xff0c 很多人还不知道怎么在手机上跑起来 xff0c 其实只需要一个CMakeLists txt就可以了 cmake minimum requir
  • centos7.3环境编译安装pktgen-dpdk,dpdk工具

    概述编译环境编译DPDK编译Pktgen dpdkDebug 概述 DPDK xff08 Date Plane Development Kit xff09 主要基于Linux系统运行 xff0c 用于快速数据包处理的函数库与驱动集合 xff
  • 捷联惯导算法心得

    1 四个概念 xff1a 地理 坐标系 机体 坐标系 他们之间换算公式 换算公式用的系数 地理坐标系 xff1a 东 北 天 xff0c 以下简称 地理 在这个坐标系里有重力永远是 xff08 0 0 1g xff09 xff0c 地磁永远
  • Java中的域,静态域,实例域

    域 所谓的域 xff0c 是field的翻译 xff0c 也就是我们常说的字段 xff0c 或者属性 比如类的字段 xff08 属性 xff09 xff0c 局部的 xff0c 全局的 静态域 也就是静态属性 xff0c 我们可以单独为它设
  • 【线程篇】线程间同步之信号量、互斥锁

    线程 xff1a 进程内部的一条执行路径 xff08 序列 xff09 什么是线程什么是进程 xff0c 进程和线程的区别 xff1f 进程是一个正在运行的程序 xff0c 是系统进程资源分配的基本单位 线程是进程内部的一条执行路径 xff
  • PL/SQL报错:无法解析指定的连接标识符

    在安装oracle的时候PL SQL报错 xff1a ORA 12154 TNS 无法解析指定的连接标识符 xff0c 在网上找了很多资料 xff0c 然后问题解决 其中下面的文章分析的过程很值得学习 xff0c 特地转载过来时刻告诫自己全
  • 【idm】idm突破cookie封锁 (解决http:1.1 403 forbidden)(附charles使用教程)

    文章目录 一 问题二 解决方法 xff08 1 xff09 在chrome中获得cookies xff08 2 xff09 安装配置charles 三 另外的方法参考 idm的使用教程参考 xff1a 一 问题 使用idm下载文件出现如下问
  • 四旋翼飞行器数学建模+轨迹跟踪控制

    数学模型 xff08 状态空间方程 xff09 xff1a 控制算法 有限时间 xff08 finite time control xff09 控制 xff0c 文献 1 xff1b 比例 微分 xff08 PD xff09 控制 xff0
  • 卡尔曼滤波算法总结

    自己学习整理卡尔曼滤波算法 xff0c 从放弃到精通 kaerman 滤波算法 卡尔曼滤波是非常经典的预测追踪算法 xff0c 是结合线性系统动态方程的维纳滤波 xff0c 其实质是线性最小均方差估计器 xff0c 能够在系统存在噪声和干扰
  • 做嵌入式驱动的前途何在

    做嵌入式驱动的前途何在 做嵌入式linux驱动的前途何在 xff1f 或者说 xff0c 怎么才能做好这一行 xff1f 我做嵌入式驱动开发已经一年多了 xff0c 感觉没学到多少东西 从网络驱动到CAN驱动 从dataflash驱动到NA
  • 串口通信的调试01

    在开发中 xff0c 我们经常遇到这种情况 xff0c 供应商给了一台仪器 xff0c 然后仪器配套有软件 我们通过点击按钮往仪器发送命令 xff0c 仪器返回数据 有些时候 xff0c 我们希望可以通过自己编写的软件来操作仪器 xff0c
  • Linux驱动程序开发之三----按键驱动(Tiny6410)

    在Linux驱动程序开发之三 按键驱动 xff08 Tiny6410 xff09 博文中讨论了使用中断来实现按键驱动 xff0c 毫无疑问 xff0c 中断方式效率相当高 xff0c 但是在此之前 xff0c CPU要想获知按键的状态都是通
  • 飞控信号SBUS信号解析为PWM信号输出

    飞控信号SBUS信号解析为PWM信号输出 1 修改STM32时钟频率 xff1a static void SetSysClockTo72 void IO uint32 t StartUpCounter 61 0 HSEStatus 61 0