嵌入式软件面试题整理

2023-05-16

 基础试题

1.用预处理指令#define 声明一个常数,用以表明1年中有多少秒(忽略闰年问

#define SECONDS_PER_YEAR (60 * 60 * 24 * 365)UL

 说明:#define 语法的基本知识(例如:不能以分号结束,括号的使用,等等);懂得预处理器将为你计算常数表达式的值;

2. 写一个“标准”宏MIN,这个宏输入两个参数并返回较小的一个

#define MIN(A,B) ((A) <= (B) ? (A) : (B))

说明:三重条件操作符的知识。这个操作符存在C语言中的原因是它使得编译器能产生比if-then-else更优化的代码,了解这个用法是很重要的。

3.嵌入式系统中经常要用到无限循环,你怎么样用C编写死循环呢?

        常用的死循环有三种,前两种用的比较多一些

        1)for( ; ; ){ }

        2) while(1){ }

        3) Loop:

             ......

        goto Loop:

4. 用变量a给出下面的定义

a) 一个整型数
b) 一个指向整型数的指针
c) 一个指向指针的的指针,它指向的指针是指向一个整型数
d) 一个有10个整型数的数组
e) 一个有10个指针的数组,该指针是指向一个整型数的
f) 一个指向有10个整型数数组的指针
g) 一个指向函数的指针,该函数有一个整型参数并返回一个整型数
h) 一个有10个指针的数组,该指针指向一个函数,该函数有一个整型参数并返回一个整型数

答案是:
a) int a;
b) int *a;
c) int **a;
d) int a[10];
e) int *a[10];
f) int (*a)[10];
g) int (*a)(int);
h) int (*a[10])(int);

5. 嵌入式系统总是要用户对变量或寄存器进行位操作。给定一个整型变量a,写两段代码,第一个设置a的bit 3,第二个清除a 的bit 3。在以上两个操作中,要保持其它位不变。

说明: 用 #defines 和 bit masks 操作。这是一个有极高可移植性的方法,是应该被用到的方法。最佳的解决方案如下:

#define BIT3 (0x1<<3)
static int a;
void set_bit3(void)
{
a |= BIT3;
}
void clear_bit3(void)
{
a &= ~BIT3;
}

6.嵌入式系统经常具有要求程序员去访问某特定的内存位置的特点。在某工程中,要求设置一绝对地址为0x67a9的整型变量的值为0xaa66。编译器是一个纯粹的ANSI编译器。写代码去完成这一任务。

说明:这一问题测试你是否知道为了访问一绝对地址把一个整型数强制转换(typecast)为一指针是合法的。典型的类似代码如下:

int *ptr;
ptr = (int *)0x67a9;
*ptr = 0xaa55;

7.中断是嵌入式系统中重要的组成部分,这导致了很多编译开发商提供一种扩展—让标准C支持中断。具代表事实是,产生了一个新的关键字__interrupt。下面的代码就使用了__interrupt关键字去定义了一个中断服务子程序(ISR),请评论一下这段代码的。

__interrupt double compute_area (double radius)
{
        double area = PI * radius * radius;
        printf(” Area = %f”, area);
        return area;
}

这个函数有太多的错误了:
1). ISR 不能返回一个值。如果你不懂这个,那么你不会被雇用的。
2). ISR 不能传递参数。如果你没有看到这一点,你被雇用的机会等同第一项。
3). 在许多的处理器/编译器中,浮点一般都是不可重入的。有些处理器/编译器需要让额处的寄存器入栈,有些处理器/编译器就是不允许在ISR中做浮点运算。此外,ISR应该是短而有效率的,在ISR中做浮点运算是不明智的。
4). 与第三点一脉相承,printf()经常有重入和性能上的问题。

说明:如果丢掉了第三和第四点,不会太为难你的。

8.关键字static的作用是什么?

答:1). 在函数体,一个被声明为静态的变量在这一函数被调用过程中维持其值不变。
2). 在模块内,一个被声明为静态的变量可以被模块内所用函数访问,但不能被模块外其它函数访问。它是一个本地的全局变量。
3). 在模块内,一个被声明为静态的函数只可被这一模块内的其它函数调用。那就是,这个函数被限制在声明它的模块的本地范围内使用。

9.关键字extern的作用是什么?

答:如果函数的声明中带有关键字extern,仅仅是暗示这个函数可能在别的源文件里定义,没有其它作用。

10.关键字const的作用?

答:const意味着"只读"(不是完全的答案)。

const int p;

int const p;

const int *p;

int * const p;

int const * a const;

本质:const在谁后面谁就不可修改,const在最前面则将其后移一位即可,二者等效。

前两个的作用是一样,a是一个常整型数。

第三个意味着a是一个指向常整型数的指针(也就是指向的整型数是不可修改的,但指针可以,此最常见于函数的参数,当你只引用传进来指针所指向的值时应该加上const修饰符,程序中修改编译就不通过,可以减少程序的bug)

第四个意思a是一个指向整型数的常指针(也就是说,指针指向的整型数是可以修改的,但指针是不可修改的)。最后一个意味着a是一个指向常整型数的常指针(也就是说,指针指向的整型数是不可修改的,同时指针也是不可修改的)。

11.关键字volatile有什么含意?

答:1).内存可见性
基于缓存一致性协议,当系统或者程序中某个变量发生修改时,此时cpu会同时其他线程,告诉被通知的线程缓存内容已经被修改,通知i线程需要更新缓存,这样每个线程都能获取到最新的变量值。
        2).基于内存屏障的防止指令重排
用Voliate修饰的变量,可以防止cpu执行指令重排序,底层的实现方式是基于4中内存屏障:读读,读写,写读,读读屏障。

难度提升

1.简述strcpy sprintf与mencpy的区别

        三者主要有以下不同之处:
        (1)操作对象不同,strcpy的两个操作对象均为字符串,sprintf的操作源对象可以是多种数据类型,目的操作对象是字符串,memcpy 的两个对象就是两个任意可操作的内存地址,并不限于何种数据类型。
        (2)执行效率不同,memcpy最高,strcpy次之,sprintf的效率最低。
        (3)实现功能不同,strcpy主要实现字符串变量间的拷贝,sprintf主要实现其他数据类型格式到字符串的转化,memcpy主要是内存块间的拷贝。
        说明:strcpy、sprintf与memcpy都可以实现拷贝的功能,但是针对的对象不同,根据实际需求,来选择合适的函数实现拷贝功能。

2.链表与数组的区别

        数组和链表有以下几点不同:
        (1)存储形式:数组是一块连续的空间,声明时就要确定长度。链表是一块可不连续的动态空间,长度可变,每个结点要保存相邻结点指针。
        (2)数据查找:数组的线性查找速度快,查找操作直接使用偏移地址。链表需要按顺序检索结点,效率低。
        (3)数据插入或删除:链表可以快速插入和删除结点,而数组则可能需要大量数据移动。
        (4)越界问题:链表不存在越界问题,数组有越界问题。
        说明:在选择数组或链表数据结构时,一定要根据实际需要进行选择。数组便于查询,链表便于插入删除。数组节省空间但是长度固定,链表虽然变长但是占了更多的存储空间。

---------------------------------------------------------------------------------------------------------------------------------

内容不定时持续更新ing

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

嵌入式软件面试题整理 的相关文章

  • Ardusub学习——飞行模式

    参考资料 xff1a Ardusb官方手册 Sub Rework joystick input and pilot input in general Flight Modes Ardusub支持多种飞行模式 xff0c 但是其中一部分需要有
  • Ardusub源码解析学习(五)——从manual model开始

    Ardusub源码解析学习 xff08 五 xff09 从manual model开始 manual init manual run 从本篇开始 xff0c 将会陆续对Ardusub中各种模式进行介绍 xff0c stabilize mod
  • 重读Ardupilot中stabilize model+MAVLINK解包过程

    APM源码和MAVLINK解析学习 重读stabilize stabilize modelinit run handle attitude MAVLINK消息包姿态信息传输过程 之前写的模式都是基于master版本的 xff0c 这次重读s
  • QGC添加自定义组件和发送自定义MAVLINK消息

    QGC添加自定义组件和发送自定义MAVLINK消息 一 添加自定义组件1 1 在飞行界面添加组件1 2 实现组件事件1 3 在MOCK模拟链接中实现验证1 4 验证 二 自定义MAVLINK消息的一些预备知识三 QGC自定义MAVLINK消
  • MAVLINK消息在Ardupilot中的接收和发送过程

    MAVLINK消息在Ardupilot中的接收和发送过程 SCHED TASKupdate receive update send 由于现在网上很多的都是APM旧版本的解释 xff0c 因此把自己的一些学习所得记录下来 截至写博客日期 xf
  • Ardupilot姿态控制器 PID控制流程

    Ardupilot姿态控制器 PID控制流程 一 PID姿态控制器1 1 Copter姿态控制官方原图1 2 ArduCopter V4 X STABILIZE 二 姿态控制器类实现2 1 类成员解析2 1 1 类成员变量2 1 2 类成员
  • APM姿态旋转理论基础

    APM姿态旋转理论基础 一 坐标系1 1 NED坐标系1 2 机体坐标系 二 欧拉角姿态变化率与机体角速度的关系 三 旋转矩阵3 1 基本公式3 2 矩阵作差3 3 旋转矩阵与变换矩阵的区别 四 DCM五 轴角法5 1 基本概念5 2 与旋
  • 详解APM的开方控制器sqrt_controller

    前言 前面说过 xff0c sqrt controller是对P项进行整定用途的 xff0c 目的就是让P项的控制响应 软 下来 xff0c 实际上就是一个经过改进的P控制器 读懂了sqrt controller xff0c 那么你对APM
  • Ardupilot前馈及平滑函数input_euler_angle_roll_pitch_yaw解析

    Ardupilot前馈及平滑函数input euler angle roll pitch yaw解析 源码解析这个函数做了什么部分细节euler accel limit input shaping angle 姿态变化率与机体角速度之间的关
  • Ardupilot倾转分离函数thrust_heading_rotation_angles

    Ardupilot倾转分离函数thrust heading rotation angles 什么是轴角分离源码分析一些细节补充效果显示及进一步修改 本文主要写一下自己对于APM倾转分离 xff08 轴角分离 xff09 函数的一些学习笔记及
  • Spring IOC原理解析

    首先恭喜守宏同学找到了自己心仪的工作 xff0c 入职的事情终于尘埃落定 xff0c 也算是一个新的开始吧 和守宏聊天的时候也说了很多有关工作的事情 xff0c 畅想了以后美好的未来 xff0c 也想到了今后的种种困难 不说别的就是单单在北
  • Ardupilot四元数姿态控制函数attitude_controller_run_quat解析

    Ardupilot四元数姿态控制函数attitude controller run quat解析 源码解析细节讲解thrust heading rotation angles update ang vel target from att e
  • Ardupilot速率控制器rate_controller_run解析

    Ardupilot速率控制器rate controller run解析 PID速率控制器源码解析rate controller run PID运算积分限制update i get ff set xxx 内容补充 xff1a 函数中陀螺仪数据
  • muduo网络库学习总结:基本架构及流程分析

    muduo网络库学习 xff1a 基本架构及流程分析 基本架构Basic ReactorMutiple Reactor 43 ThreadPool muduo库的基本使用基本结构介绍EventLoop类Poller类Channel类TcpC
  • push_back和emplace_back比较以及vector扩容

    push back和emplace back比较以及vector扩容 push back和emplace back的比较使用测试类测试过程将实体类对象传入将右值数字传入将实体类对象move 转右值之后传入 vector扩容过程 关于这部分内
  • 在ubuntu 11.04下编写驱动程序

    在ubuntu11 04下直接就可以编写驱动程序 xff0c 并进行编译 hello c include 34 linux init h 34 include 34 linux module h 34 static int hello in
  • ROS的优势与不足(除了ROS 机器人自主定位导航还能怎么做?)

    导读 xff1a 随着这两年国内机器人的升温 xff0c 自主定位导航技术作为机器人智能化的第一步正不断引起行业内的重视 为了实现这一功能 xff0c 不少厂家选择采用机器人操作系统ROS xff08 Robot Operation Sys
  • C++版本发展史

    1 C 43 43 98 2 C 43 43 03 3 C 43 43 11 3 1 nullptr 3 2 auto 3 3 decltype 3 4 初始化列表 3 5 范围for循环 3 6 右值引用 3 7 字符串字面量 3 8 n
  • 分布式数据库难题(三):数据一致性

    1 什么是数据一致性 一直以来 xff0c 在 分布式系统 和 数据库 这两个学科中 xff0c 一致性 xff08 Consistency xff09 都是重要概念 xff0c 但它表达的内容却并不相同 对于分布式系统而言 xff0c 一
  • 分布式数据库难题(四):单机事务

    1 ACID的含义 在数据库中 xff0c 事务 是由多个操作构成的序列 1970 年詹姆斯 格雷 xff08 Jim Gray xff09 提出了事务的 ACID 四大特性 xff0c 将广义上的事务一致性具化到了原子性 一致性 隔离性和

随机推荐

  • 对一个整数进行因式分解,求出所有质因数

    1 题目描述 给定一个正整数N xff0c 对N进行质因数分解 xff0c 求解N的所有质因数 2 解题思路 xff08 1 xff09 2 是很特殊的 xff0c 必须单独列出 xff08 2 xff09 必须先判断是否质数 因为如果是质
  • Windows10下安装Ubuntu18.04LTS详细教程

    这篇文章分享自己在Windows10系统下安装VMware虚拟机 xff0c 然后在VMware中安装Ubuntu 18 04 LTS的详细过程 之所以选择在虚拟机中安装Ubuntu xff0c 主要是可以不影响自己电脑的正常使用 xff0
  • 我的2011 写给小白

    许久前就想写这篇日志了 xff0c 但是一直以各种理由搪塞着 xff0c 没空闲 xff0c 再加上该死的期末考试 xff0c 唉 xff0c 真是愁煞人也 xff0c 现在好了 xff0c 什么都完事了 xff0c 也淡定了 xff0c
  • Pixhawk的历史

    发展历程 xff1a APM gt PX4FMU IO gt Pixhawk xff1a 1 Arduino简介 Arduino就是主要以以AVR单片机为核心控制器的单片机应用开发板 xff08 当然也有其他核心的例如STM32版本的但是不
  • 姿态解算基础:欧拉角、方向余弦、四元数

    什么是姿态解算 xff1a 飞行器的姿态解算过程涉及到两个坐标系 xff0c 一个是运载体的机体坐标系 xff0c 该坐标系与运载体固连 xff0c 当运载体转动的时候 xff0c 这个坐标系也跟着转动 xff0c 我们假设运载体的坐标系为
  • 姿态解算进阶:互补滤波(陀螺仪、加速度计、地磁计数据融合)

    互补滤波原理 xff1a 在四轴入门理论知识那节我们说 xff0c 加速度计和磁传感器都是极易受外部干扰的传感器 xff0c 都只能得到2维的角度关系 xff0c 但是测量值随时间的变化相对较小 xff0c 结合加速度计和磁传感器可以得到3
  • C++实现线程池

    本文转载自 xff1a https blog csdn net caoshangpa article details 80374651 1 为什么需要线程池技术 目前的大多数网络服务器 xff0c 包括Web服务器 Email服务器以及数据
  • 详解coredump

    1 什么是coredump xff1a 2 开启或关闭core文件的生成 xff1a 3 core文件的存储位置和文件名 xff1a 4 造成程序core的原因 xff08 参考 xff09 xff1a 5 用GDB调试coredump x
  • C++中二进制、字符串、十六进制、十进制之间的转换

    1 十进制和二进制相互转换 2 字符串和二进制相互转换 3 字符串和十进制相互转换 4 十进制和十六进制相互转换 5 二进制和十六进制 1 十进制和二进制相互转换 xff08 1 xff09 十进制转二进制 int a 61 10 bits
  • 解决 docker: Invalid containerPort: 5000 .

    复制粘贴的命令报这个错误 xff0c 结果手敲了一下就好了 可能就是 v 那里字符有点问题 xff0c 或者多个空格之类的 看了下其他人说的解决办法 xff0c 说也有可能是大写字母的问题 学习不要图省事 xff0c 真的 xff01
  • linux输入yum后提示: -bash: /usr/bin/yum: No such file or directory的解决方法

    一 首先了解Linux系统下这两个命令的区别 yum xff1a 属于 xff1a RedHat系列 常见系统有 xff1a Redhat Centos Fedora等 apt get xff1a 属于 xff1a Debian系列 常见系
  • OpenCV矩形检测

    点击我爱计算机视觉标星 xff0c 更快获取CVML新技术 今天在52CV交流群里有朋友问到矩形检测的问题 xff0c 恰好前几天做了一个与此相关的项目 xff0c 调研了一下相关的算法 xff08 期间被某带bug的开源代码坑了很久 xf
  • 修改树莓派系统的虚拟内存大小(SWAP)

    树莓派默认的虚拟内存大小才100M xff0c 有时候我们需要扩大它 xff0c 树莓派的虚拟内存配置文件和debian默认的位置不一样 xff0c 所以这里我们修改的是 etc dphys swapfile sudo nano etc d
  • Python爬虫—request模块与验证码识别

    相关文章链接 xff1a Python爬虫 爬虫基础简介 Python爬虫 数据解析及案例 xff08 4K图片爬取 xff09 一 request模块 1 1 概念 python中原生的一种基于网络请求的模块 xff0c 功能非常强大 x
  • 学习 ROS 机器人没有前途?!

    点击蓝字 关注我们 本文转载自蓝桥云课合作作者 xff1a 机器马 xff0c 文末有小惊喜哦 01 ROS 是什么 机器人操作系统 xff08 ROS xff09 是一种用于编写机器人软件的灵活框架 它是工具 xff0c 库和协议的集合
  • 运维必学的监控系统——Prometheus,大牛免费直播带你入门~

    关注 实验楼 xff0c 每天分享一个项目教程 实验1小时 明晚开启 xff0c 腾讯大牛天火老师带你入门Promentheus xff08 普罗米修斯 xff09 这一当下超火的监控系统 提到监控系统 xff0c 人们往往会想到Zabbi
  • VINS-Mono代码阅读笔记(十一):进入pose_graph节点代码分析

    本篇笔记紧接着上一篇VINS Mono代码阅读笔记 xff08 十 xff09 xff1a vins estimator中的非线性优化 xff0c 来接着学习VINS Mono系统中重定位和全局优化部部分的代码 这部分代码在pose gra
  • ROS中插件plugin的简单使用方法

    插件 xff0c 如同其名字一样 xff0c 第一次接触的时候让我想到了U盘或者USB线这类东西 xff0c 它们和电脑没有关系 xff0c 但是插入 xff08 挂载 xff09 电脑USB口后却可以正常使用 xff0c 仿佛扩展了电脑的
  • ROS中的roslaunch命令和launch文件(ROS入门学习笔记四)

    ROS中的基本对象和概念学习笔记 ROS入门学习笔记一 ROS中创建工作区和包 ROS入门学习笔记二 ROS功能包中CMakeLists txt的说明 ROS入门学习笔记三 1 roslaunch命令 我们知道 xff0c rosrun命令
  • 嵌入式软件面试题整理

    基础试题 1 用预处理指令 define 声明一个常数 xff0c 用以表明1年中有多少秒 xff08 忽略闰年问 define SECONDS PER YEAR 60 60 24 365 UL 说明 xff1a define 语法的基本知